@@ -59,22 +59,15 @@ arg_output_directory <- args[6] # string
59
59
arg_ballgown_directory <- args [7 ] # string
60
60
arg_gtf_file <- args [8 ] # string
61
61
arg_circTest_file <- args [9 ] # string
62
- # arg_num_top_genes <- as.integer(args[10])
63
62
arg_head_header <- as.logical(args [10 ])
64
63
65
64
# # load complete data set
66
65
message(" Loading CircRNACount" )
67
66
CircRNACount <- read.delim(paste(arg_dcc_data , " CircRNACount" , sep = " /" ), header = T )
68
67
69
- message(" Loading LinearRNACount" )
70
- LinearCount <- read.delim(paste(arg_dcc_data , " LinearCount" , sep = " /" ), header = T )
71
-
72
68
message(" Loading CircCoordinates" )
73
69
CircCoordinates <- read.delim(paste(arg_dcc_data , " CircCoordinates" , sep = " /" ), header = T )
74
70
75
- CircRNACount <- CircRNACount [, c(1 : 3 , arg_condition_columns )] # we always need the first 3 columns
76
- LinearCount <- LinearCount [, c(1 : 3 , arg_condition_columns )] # we always need the first 3 columns
77
-
78
71
# read sub directories containing the ballgown runs and return list
79
72
ballgownRuns <- as.list(list.files(arg_ballgown_directory , full.names = TRUE ))
80
73
@@ -83,7 +76,6 @@ baseDir <- arg_output_directory
83
76
84
77
# group mapping
85
78
group <- unlist(lapply(arg_groups , function (x ) {return (arg_condition_list [x ])}))
86
- unlist(lapply(arg_groups , function (x ) {print(x )}))
87
79
88
80
# sample<>replicate mapping
89
81
id <- unlist(lapply(seq(1 , length(arg_replicates )), function (x ) {return ((paste(arg_condition_list [x ], arg_replicates [x ], sep = " _R" )))}))
@@ -95,12 +87,11 @@ bg_dirs_to_work <- unlist(lapply(arg_condition_columns, function(x) {return(ball
95
87
message(" Starting ballgown processing" )
96
88
97
89
bg <- ballgown(bg_dirs_to_work , verbose = TRUE )
98
- pData(bg )<- bg.dccDF
99
90
100
91
message(" Preparing necessary data structures" )
101
92
102
- whole_exon_table = eexpr(bg , ' all' )# eexpr -> exon level
103
- whole_intron_table = iexpr(bg , ' all' )# iexpr -> intron level
93
+ whole_exon_table <- eexpr(bg , ' all' )# eexpr -> exon level
94
+ whole_intron_table <- iexpr(bg , ' all' )# iexpr -> intron level
104
95
105
96
t2g <- indexes(bg )$ t2g # transcript / gene table
106
97
e2t <- indexes(bg )$ e2t # exon / transcript table
@@ -148,9 +139,6 @@ e2g.minimal=e2g.counts[,-c(1,ncol(e2g.counts))]
148
139
# indices of exons in e2g.minimal table with > 40 counts throughout all samples
149
140
idx <- which(apply(e2g.minimal ,1 ,sum )> 4 * 10 )
150
141
151
- # select > 40 count exons from exon / gene table
152
- e2g.counts <- e2g.counts [idx ,];
153
-
154
142
# select > 40 count exons from the slimmed exon / gene table
155
143
e2g.minimal = e2g.minimal [idx ,]
156
144
0 commit comments