Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add solutions to lc problem: No.0235 #4265

Merged
merged 1 commit into from
Mar 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ tags:
<p><strong>示例 1:</strong></p>

<pre><strong>输入:</strong> root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
<strong>输出:</strong> 6
<strong>输出:</strong> 6
<strong>解释: </strong>节点 <code>2 </code>和节点 <code>8 </code>的最近公共祖先是 <code>6。</code>
</pre>

Expand All @@ -57,15 +57,11 @@ tags:

<!-- solution:start -->

### 方法一:迭代或递归
### 方法一:迭代

从上到下搜索,找到第一个值位于 $[p.val, q.val]$ 之间的结点即可
我们从根节点开始遍历,如果当前节点的值小于 $\textit{p}$ 和 $\textit{q}$ 的值,说明 $\textit{p}$ 和 $\textit{q}$ 应该在当前节点的右子树,因此将当前节点移动到右子节点;如果当前节点的值大于 $\textit{p}$ 和 $\textit{q}$ 的值,说明 $\textit{p}$ 和 $\textit{q}$ 应该在当前节点的左子树,因此将当前节点移动到左子节点;否则说明当前节点就是 $\textit{p}$ 和 $\textit{q}$ 的最近公共祖先,返回当前节点即可

既可以用迭代实现,也可以用递归实现。

迭代的时间复杂度为 $O(n)$,空间复杂度为 $O(1)$。

递归的时间复杂度为 $O(n)$,空间复杂度为 $O(n)$。
时间复杂度 $O(n)$,其中 $n$ 是二叉搜索树的节点个数。空间复杂度 $O(1)$。

<!-- tabs:start -->

Expand Down Expand Up @@ -164,9 +160,9 @@ public:

func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
for {
if root.Val < p.Val && root.Val < q.Val {
if root.Val < min(p.Val, q.Val) {
root = root.Right
} else if root.Val > p.Val && root.Val > q.Val {
} else if root.Val > max(p.Val, q.Val) {
root = root.Left
} else {
return root
Expand Down Expand Up @@ -209,13 +205,47 @@ function lowestCommonAncestor(
}
```

#### C#

```cs
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
while (true) {
if (root.val < Math.Min(p.val, q.val)) {
root = root.right;
} else if (root.val > Math.Max(p.val, q.val)) {
root = root.left;
} else {
return root;
}
}
}
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- solution:start -->

### 方法二
### 方法二:递归

我们也可以使用递归的方法来解决这个问题。

我们首先判断当前节点的值是否小于 $\textit{p}$ 和 $\textit{q}$ 的值,如果是,则递归遍历右子树;如果当前节点的值大于 $\textit{p}$ 和 $\textit{q}$ 的值,如果是,则递归遍历左子树;否则说明当前节点就是 $\textit{p}$ 和 $\textit{q}$ 的最近公共祖先,返回当前节点即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉搜索树的节点个数。

<!-- tabs:start -->

Expand Down Expand Up @@ -339,12 +369,42 @@ function lowestCommonAncestor(
p: TreeNode | null,
q: TreeNode | null,
): TreeNode | null {
if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
if (root.val > p.val && root.val > q.val) {
return lowestCommonAncestor(root.left, p, q);
}
if (root.val < p.val && root.val < q.val) {
return lowestCommonAncestor(root.right, p, q);
}
return root;
}
```

#### C#

```cs
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root.val < Math.Min(p.val, q.val)) {
return LowestCommonAncestor(root.right, p, q);
}
if (root.val > Math.Max(p.val, q.val)) {
return LowestCommonAncestor(root.left, p, q);
}
return root;
}
}
```

<!-- tabs:end -->

<!-- solution:end -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,11 @@ tags:

<!-- solution:start -->

### Solution 1
### Solution 1: Iteration

Starting from the root node, we traverse the tree. If the current node's value is less than both $\textit{p}$ and $\textit{q}$ values, it means that $\textit{p}$ and $\textit{q}$ should be in the right subtree of the current node, so we move to the right child. If the current node's value is greater than both $\textit{p}$ and $\textit{q}$ values, it means that $\textit{p}$ and $\textit{q}$ should be in the left subtree, so we move to the left child. Otherwise, it means the current node is the lowest common ancestor of $\textit{p}$ and $\textit{q}$, so we return the current node.

The time complexity is $O(n)$, where $n$ is the number of nodes in the binary search tree. The space complexity is $O(1)$.

<!-- tabs:start -->

Expand Down Expand Up @@ -163,9 +167,9 @@ public:

func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
for {
if root.Val < p.Val && root.Val < q.Val {
if root.Val < min(p.Val, q.Val) {
root = root.Right
} else if root.Val > p.Val && root.Val > q.Val {
} else if root.Val > max(p.Val, q.Val) {
root = root.Left
} else {
return root
Expand Down Expand Up @@ -208,13 +212,47 @@ function lowestCommonAncestor(
}
```

#### C#

```cs
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
while (true) {
if (root.val < Math.Min(p.val, q.val)) {
root = root.right;
} else if (root.val > Math.Max(p.val, q.val)) {
root = root.left;
} else {
return root;
}
}
}
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- solution:start -->

### Solution 2
### Solution 2: Recursion

We can also use a recursive approach to solve this problem.

We first check if the current node's value is less than both $\textit{p}$ and $\textit{q}$ values. If it is, we recursively traverse the right subtree. If the current node's value is greater than both $\textit{p}$ and $\textit{q}$ values, we recursively traverse the left subtree. Otherwise, it means the current node is the lowest common ancestor of $\textit{p}$ and $\textit{q}$, so we return the current node.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the number of nodes in the binary search tree.

<!-- tabs:start -->

Expand Down Expand Up @@ -338,12 +376,42 @@ function lowestCommonAncestor(
p: TreeNode | null,
q: TreeNode | null,
): TreeNode | null {
if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
if (root.val > p.val && root.val > q.val) {
return lowestCommonAncestor(root.left, p, q);
}
if (root.val < p.val && root.val < q.val) {
return lowestCommonAncestor(root.right, p, q);
}
return root;
}
```

#### C#

```cs
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root.val < Math.Min(p.val, q.val)) {
return LowestCommonAncestor(root.right, p, q);
}
if (root.val > Math.Max(p.val, q.val)) {
return LowestCommonAncestor(root.left, p, q);
}
return root;
}
}
```

<!-- tabs:end -->

<!-- solution:end -->
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
while (true) {
if (root.val < Math.Min(p.val, q.val)) {
root = root.right;
} else if (root.val > Math.Max(p.val, q.val)) {
root = root.left;
} else {
return root;
}
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,12 @@

func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
for {
if root.Val < p.Val && root.Val < q.Val {
if root.Val < min(p.Val, q.Val) {
root = root.Right
} else if root.Val > p.Val && root.Val > q.Val {
} else if root.Val > max(p.Val, q.Val) {
root = root.Left
} else {
return root
}
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root.val < Math.Min(p.val, q.val)) {
return LowestCommonAncestor(root.right, p, q);
}
if (root.val > Math.Max(p.val, q.val)) {
return LowestCommonAncestor(root.left, p, q);
}
return root;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,11 @@ function lowestCommonAncestor(
p: TreeNode | null,
q: TreeNode | null,
): TreeNode | null {
if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
if (root.val > p.val && root.val > q.val) {
return lowestCommonAncestor(root.left, p, q);
}
if (root.val < p.val && root.val < q.val) {
return lowestCommonAncestor(root.right, p, q);
}
return root;
}