Skip to content

Commit

Permalink
Merge pull request #1289 from e-sensing/dev
Browse files Browse the repository at this point in the history
Pre-realease 1.5.2
  • Loading branch information
gilbertocamara authored Feb 13, 2025
2 parents 32d058c + 9af7c1a commit 0a3ea76
Show file tree
Hide file tree
Showing 227 changed files with 11,110 additions and 5,854 deletions.
69 changes: 39 additions & 30 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: sits
Type: Package
Version: 1.5.1
Version: 1.5.2
Title: Satellite Image Time Series Analysis for Earth Observation Data Cubes
Authors@R: c(person('Rolf', 'Simoes', role = c('aut'), email = '[email protected]'),
person('Gilberto', 'Camara', role = c('aut', 'cre', 'ths'), email = '[email protected]'),
Expand All @@ -11,6 +11,7 @@ Authors@R: c(person('Rolf', 'Simoes', role = c('aut'), email = 'rolf.simoes@inpe
person('Charlotte', 'Pelletier', role = c('ctb'), email = '[email protected]'),
person('Pedro', 'Andrade', role = c('ctb'), email = '[email protected]'),
person('Alber', 'Sanchez', role = c('ctb'), email = '[email protected]'),
person('Estefania', 'Pizarro', role = c('ctb'), email = '[email protected]'),
person('Gilberto', 'Queiroz', role = c('ctb'), email = '[email protected]')
)
Maintainer: Gilberto Camara <[email protected]>
Expand All @@ -26,14 +27,18 @@ Description: An end-to-end toolkit for land use and land cover classification
smoothing filters for dealing with noisy time series.
Includes functions for quality assessment of training samples using self-organized maps
as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>.
Includes methods to reduce training samples imbalance proposed by
Chawla et al (2002) <doi:10.1613/jair.953>.
Provides machine learning methods including support vector machines,
random forests, extreme gradient boosting, multi-layer perceptrons,
temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>,
temporal convolutional neural networks proposed
by Pelletier et al (2019) <doi:10.3390/rs11050523>,
and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>.
Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>.
Performs efficient classification of big Earth observation data cubes and includes
functions for post-classification smoothing based on Bayesian inference, and
methods for active learning and uncertainty assessment. Supports object-based
functions for post-classification smoothing based on Bayesian inference
as described by Camara et al (2024) <doi:10.3390/rs16234572>, and
methods for active learning and uncertainty assessment. Supports region-based
time series analysis using package supercells <https://jakubnowosad.com/supercells/>.
Enables best practices for estimating area and assessing accuracy of land change as
recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>.
Expand All @@ -47,33 +52,33 @@ License: GPL-2
ByteCompile: true
LazyData: true
Imports:
yaml,
dplyr (>= 1.0.0),
gdalUtilities,
yaml (>= 2.3.0),
dplyr (>= 1.1.0),
grDevices,
graphics,
leaflet (>= 2.2.2),
lubridate,
magrittr,
parallel (>= 4.0.5),
luz (>= 0.4.0),
parallel,
purrr (>= 1.0.2),
Rcpp,
randomForest,
Rcpp (>= 1.0.13),
rstac (>= 1.0.1),
sf (>= 1.0-12),
showtext,
sysfonts,
sf (>= 1.0-19),
slider (>= 0.2.0),
stats,
terra (>= 1.7-65),
terra (>= 1.8-5),
tibble (>= 3.1),
tidyr (>= 1.2.0),
torch (>= 0.11.0),
tidyr (>= 1.3.0),
tmap (>= 4.0),
torch (>= 0.14.0),
units,
utils
Suggests:
aws.s3,
caret,
cli,
cols4all,
cols4all (>= 0.8.0),
covr,
dendextend,
dtwclust,
Expand All @@ -82,31 +87,25 @@ Suggests:
e1071,
exactextractr,
FNN,
future,
gdalcubes (>= 0.6.0),
gdalcubes (>= 0.7.0),
geojsonsf,
ggplot2,
httr2,
httr2 (>= 1.1.0),
jsonlite,
kohonen (>= 3.0.11),
leafem (>= 0.2.0),
leaflet (>= 2.2.0),
luz (>= 0.4.0),
methods,
mgcv,
nnet,
openxlsx,
randomForest,
proxy,
randomForestExplainer,
RColorBrewer,
RcppArmadillo (>= 0.12),
scales,
spdep,
stars (>= 0.6-5),
stringr,
supercells (>= 1.0.0),
testthat (>= 3.1.3),
tmap (>= 3.3),
tools,
xgboost
Config/testthat/edition: 3
Expand All @@ -121,6 +120,7 @@ Collate:
'api_accuracy.R'
'api_apply.R'
'api_band.R'
'api_bayts.R'
'api_bbox.R'
'api_block.R'
'api_check.R'
Expand All @@ -137,16 +137,20 @@ Collate:
'api_cube.R'
'api_data.R'
'api_debug.R'
'api_detect_change.R'
'api_download.R'
'api_dtw.R'
'api_environment.R'
'api_factory.R'
'api_file_info.R'
'api_file.R'
'api_gdal.R'
'api_gdalcubes.R'
'api_grid.R'
'api_jobs.R'
'api_kohonen.R'
'api_label_class.R'
'api_mask.R'
'api_merge.R'
'api_mixture_model.R'
'api_ml_model.R'
Expand All @@ -160,16 +164,15 @@ Collate:
'api_plot_vector.R'
'api_point.R'
'api_predictors.R'
'api_preconditions.R'
'api_raster.R'
'api_raster_sub_image.R'
'api_raster_terra.R'
'api_reclassify.R'
'api_reduce.R'
'api_regularize.R'
'api_request.R'
'api_request_httr2.R'
'api_roi.R'
'api_s2tile.R'
'api_samples.R'
'api_segments.R'
'api_select.R'
Expand Down Expand Up @@ -200,13 +203,13 @@ Collate:
'api_tile.R'
'api_timeline.R'
'api_tmap.R'
'api_tmap_v3.R'
'api_torch.R'
'api_torch_psetae.R'
'api_ts.R'
'api_tuning.R'
'api_uncertainty.R'
'api_utils.R'
'api_validate.R'
'api_values.R'
'api_variance.R'
'api_vector.R'
Expand All @@ -218,8 +221,8 @@ Collate:
'sits_add_base_cube.R'
'sits_apply.R'
'sits_accuracy.R'
'sits_active_learning.R'
'sits_bands.R'
'sits_bayts.R'
'sits_bbox.R'
'sits_classify.R'
'sits_colors.R'
Expand All @@ -230,10 +233,15 @@ Collate:
'sits_cube_copy.R'
'sits_clean.R'
'sits_cluster.R'
'sits_detect_change.R'
'sits_detect_change_method.R'
'sits_dtw.R'
'sits_factory.R'
'sits_filters.R'
'sits_geo_dist.R'
'sits_get_data.R'
'sits_get_class.R'
'sits_get_probs.R'
'sits_histogram.R'
'sits_imputation.R'
'sits_labels.R'
Expand All @@ -250,6 +258,7 @@ Collate:
'sits_predictors.R'
'sits_reclassify.R'
'sits_reduce.R'
'sits_reduce_imbalance.R'
'sits_regularize.R'
'sits_sample_functions.R'
'sits_segmentation.R'
Expand Down
Loading

0 comments on commit 0a3ea76

Please sign in to comment.