Skip to content

Commit 0dbe66f

Browse files
authored
Merge pull request #1139 from OldLipe/master
Add rOpenSci badge in README
2 parents 9a5a16b + 90f8697 commit 0dbe66f

File tree

2 files changed

+45
-50
lines changed

2 files changed

+45
-50
lines changed

README.Rmd

+1
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@ torch::torch_manual_seed(1234)
2424
<!-- badges: start -->
2525

2626
<!-- [![Build Status](https://drone.dpi.inpe.br/api/badges/e-sensing/sits/status.svg)](https://drone.dpi.inpe.br/e-sensing/sits) -->
27+
[![Status at rOpenSci Software Peer Review](https://badges.ropensci.org/596_status.svg)](https://github.com/ropensci/software-review/issues/596)
2728
[![CRAN status](https://www.r-pkg.org/badges/version/sits)](https://cran.r-project.org/package=sits)
2829
[![R-check-dev](https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml)
2930
[![Codecov](https://codecov.io/gh/e-sensing/sits/branch/dev/graph/badge.svg?token=hZxdJgKGcE)](https://codecov.io/gh/e-sensing/sits)

README.md

+44-50
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,8 @@ Cubes
99
<!-- badges: start -->
1010
<!-- [![Build Status](https://drone.dpi.inpe.br/api/badges/e-sensing/sits/status.svg)](https://drone.dpi.inpe.br/e-sensing/sits) -->
1111

12+
[![Status at rOpenSci Software Peer
13+
Review](https://badges.ropensci.org/596_status.svg)](https://github.com/ropensci/software-review/issues/596)
1214
[![CRAN
1315
status](https://www.r-pkg.org/badges/version/sits)](https://cran.r-project.org/package=sits)
1416
[![R-check-dev](https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml)
@@ -119,7 +121,7 @@ devtools::install_github("e-sensing/sits", dependencies = TRUE)
119121
# load the sits library
120122
library(sits)
121123
#> SITS - satellite image time series analysis.
122-
#> Loaded sits v1.4.2-1.
124+
#> Loaded sits v1.5.0.
123125
#> See ?sits for help, citation("sits") for use in publication.
124126
#> Documentation avaliable in https://e-sensing.github.io/sitsbook/.
125127
```
@@ -137,8 +139,8 @@ more information on how to install the required drivers.
137139
### Image Collections Accessible by `sits`
138140

139141
Users create data cubes from analysis-ready data (ARD) image collections
140-
available in cloud services. The collections accessible in `sits`
141-
1.4.2.1 are:
142+
available in cloud services. The collections accessible in `sits` 1.5.0
143+
are:
142144

143145
1. Brazil Data Cube
144146
([BDC](http://brazildatacube.org/en/home-page-2/#dataproducts)):
@@ -174,13 +176,13 @@ similar ways.
174176

175177
``` r
176178
s2_cube <- sits_cube(
177-
source = "MPC",
178-
collection = "SENTINEL-2-L2A",
179-
tiles = c("20LKP", "20LLP"),
180-
bands = c("B03", "B08", "B11", "SCL"),
181-
start_date = as.Date("2018-07-01"),
182-
end_date = as.Date("2019-06-30"),
183-
progress = FALSE
179+
source = "MPC",
180+
collection = "SENTINEL-2-L2A",
181+
tiles = c("20LKP", "20LLP"),
182+
bands = c("B03", "B08", "B11", "SCL"),
183+
start_date = as.Date("2018-07-01"),
184+
end_date = as.Date("2019-06-30"),
185+
progress = FALSE
184186
)
185187
```
186188

@@ -208,11 +210,11 @@ Pebesma, 2019](https://www.mdpi.com/2306-5729/4/3/92).
208210

209211
``` r
210212
gc_cube <- sits_regularize(
211-
cube = s2_cube,
212-
output_dir = tempdir(),
213-
period = "P15D",
214-
res = 60,
215-
multicores = 4
213+
cube = s2_cube,
214+
output_dir = tempdir(),
215+
period = "P15D",
216+
res = 60,
217+
multicores = 4
216218
)
217219
```
218220

@@ -247,16 +249,16 @@ library(sits)
247249
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
248250
# create a cube from downloaded files
249251
raster_cube <- sits_cube(
250-
source = "BDC",
251-
collection = "MOD13Q1-6",
252-
data_dir = data_dir,
253-
delim = "_",
254-
parse_info = c("X1", "X2", "tile", "band", "date"),
255-
progress = FALSE
252+
source = "BDC",
253+
collection = "MOD13Q1-6",
254+
data_dir = data_dir,
255+
delim = "_",
256+
parse_info = c("X1", "X2", "tile", "band", "date"),
257+
progress = FALSE
256258
)
257259
# obtain a set of samples defined by a CSV file
258260
csv_file <- system.file("extdata/samples/samples_sinop_crop.csv",
259-
package = "sits"
261+
package = "sits"
260262
)
261263
# retrieve the time series associated with the samples from the data cube
262264
points <- sits_get_data(raster_cube, samples = csv_file)
@@ -311,16 +313,16 @@ data("samples_modis_ndvi")
311313
data("point_mt_6bands")
312314
# Train a deep learning model
313315
tempcnn_model <- sits_train(
314-
samples = samples_modis_ndvi,
315-
ml_method = sits_tempcnn()
316+
samples = samples_modis_ndvi,
317+
ml_method = sits_tempcnn()
316318
)
317319
# Select NDVI band of the point to be classified
318320
# Classify using TempCNN model
319321
# Plot the result
320-
point_mt_6bands |>
321-
sits_select(bands = "NDVI") |>
322-
sits_classify(tempcnn_model) |>
323-
plot()
322+
point_mt_6bands |>
323+
sits_select(bands = "NDVI") |>
324+
sits_classify(tempcnn_model) |>
325+
plot()
324326
#> | | | 0% | |=================================== | 50% | |======================================================================| 100%
325327
```
326328

@@ -342,44 +344,36 @@ using `sits_view()`.
342344
# Cube is composed of MOD13Q1 images from the Sinop region in Mato Grosso (Brazil)
343345
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
344346
sinop <- sits_cube(
345-
source = "BDC",
346-
collection = "MOD13Q1-6",
347-
data_dir = data_dir,
348-
delim = "_",
349-
parse_info = c("X1", "X2", "tile", "band", "date"),
350-
progress = FALSE
347+
source = "BDC",
348+
collection = "MOD13Q1-6",
349+
data_dir = data_dir,
350+
delim = "_",
351+
parse_info = c("X1", "X2", "tile", "band", "date"),
352+
progress = FALSE
351353
)
352354
# Classify the raster cube, generating a probability file
353355
# Filter the pixels in the cube to remove noise
354356
probs_cube <- sits_classify(
355-
data = sinop,
356-
ml_model = tempcnn_model,
357-
output_dir = tempdir()
357+
data = sinop,
358+
ml_model = tempcnn_model,
359+
output_dir = tempdir()
358360
)
359361
#> | | | 0% | |======================================================================| 100%
360362
# apply a bayesian smoothing to remove outliers
361363
bayes_cube <- sits_smooth(
362-
cube = probs_cube,
363-
output_dir = tempdir()
364+
cube = probs_cube,
365+
output_dir = tempdir()
364366
)
365367
# generate a thematic map
366368
label_cube <- sits_label_classification(
367-
cube = bayes_cube,
368-
output_dir = tempdir()
369+
cube = bayes_cube,
370+
output_dir = tempdir()
369371
)
370372
#> | | | 0% | |======================================================================| 100%
371373
# plot the the labelled cube
372374
plot(label_cube,
373-
title = "Land use and Land cover in Sinop, MT, Brazil in 2018"
375+
title = "Land use and Land cover in Sinop, MT, Brazil in 2018"
374376
)
375-
#> The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
376-
#> which was just loaded, will retire in October 2023.
377-
#> Please refer to R-spatial evolution reports for details, especially
378-
#> https://r-spatial.org/r/2023/05/15/evolution4.html.
379-
#> It may be desirable to make the sf package available;
380-
#> package maintainers should consider adding sf to Suggests:.
381-
#> The sp package is now running under evolution status 2
382-
#> (status 2 uses the sf package in place of rgdal)
383377
```
384378

385379
<div class="figure" style="text-align: center">

0 commit comments

Comments
 (0)