99<!-- badges: start -->
1010<!-- [](https://drone.dpi.inpe.br/e-sensing/sits) -->
1111
12+ [ ![ Status at rOpenSci Software Peer
13+ Review] ( https://badges.ropensci.org/596_status.svg )] ( https://github.com/ropensci/software-review/issues/596 )
1214[ ![ CRAN
1315status] ( https://www.r-pkg.org/badges/version/sits )] ( https://cran.r-project.org/package=sits )
1416[ ![ R-check-dev] ( https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml/badge.svg )] ( https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml )
@@ -119,7 +121,7 @@ devtools::install_github("e-sensing/sits", dependencies = TRUE)
119121# load the sits library
120122library(sits )
121123# > SITS - satellite image time series analysis.
122- # > Loaded sits v1.4.2-1 .
124+ # > Loaded sits v1.5.0 .
123125# > See ?sits for help, citation("sits") for use in publication.
124126# > Documentation avaliable in https://e-sensing.github.io/sitsbook/.
125127```
@@ -137,8 +139,8 @@ more information on how to install the required drivers.
137139### Image Collections Accessible by ` sits `
138140
139141Users create data cubes from analysis-ready data (ARD) image collections
140- available in cloud services. The collections accessible in ` sits `
141- 1.4.2.1 are:
142+ available in cloud services. The collections accessible in ` sits ` 1.5.0
143+ are:
142144
1431451 . Brazil Data Cube
144146 ([ BDC] ( http://brazildatacube.org/en/home-page-2/#dataproducts ) ):
@@ -174,13 +176,13 @@ similar ways.
174176
175177``` r
176178s2_cube <- sits_cube(
177- source = " MPC" ,
178- collection = " SENTINEL-2-L2A" ,
179- tiles = c(" 20LKP" , " 20LLP" ),
180- bands = c(" B03" , " B08" , " B11" , " SCL" ),
181- start_date = as.Date(" 2018-07-01" ),
182- end_date = as.Date(" 2019-06-30" ),
183- progress = FALSE
179+ source = " MPC" ,
180+ collection = " SENTINEL-2-L2A" ,
181+ tiles = c(" 20LKP" , " 20LLP" ),
182+ bands = c(" B03" , " B08" , " B11" , " SCL" ),
183+ start_date = as.Date(" 2018-07-01" ),
184+ end_date = as.Date(" 2019-06-30" ),
185+ progress = FALSE
184186)
185187```
186188
@@ -208,11 +210,11 @@ Pebesma, 2019](https://www.mdpi.com/2306-5729/4/3/92).
208210
209211``` r
210212gc_cube <- sits_regularize(
211- cube = s2_cube ,
212- output_dir = tempdir(),
213- period = " P15D" ,
214- res = 60 ,
215- multicores = 4
213+ cube = s2_cube ,
214+ output_dir = tempdir(),
215+ period = " P15D" ,
216+ res = 60 ,
217+ multicores = 4
216218)
217219```
218220
@@ -247,16 +249,16 @@ library(sits)
247249data_dir <- system.file(" extdata/raster/mod13q1" , package = " sits" )
248250# create a cube from downloaded files
249251raster_cube <- sits_cube(
250- source = " BDC" ,
251- collection = " MOD13Q1-6" ,
252- data_dir = data_dir ,
253- delim = " _" ,
254- parse_info = c(" X1" , " X2" , " tile" , " band" , " date" ),
255- progress = FALSE
252+ source = " BDC" ,
253+ collection = " MOD13Q1-6" ,
254+ data_dir = data_dir ,
255+ delim = " _" ,
256+ parse_info = c(" X1" , " X2" , " tile" , " band" , " date" ),
257+ progress = FALSE
256258)
257259# obtain a set of samples defined by a CSV file
258260csv_file <- system.file(" extdata/samples/samples_sinop_crop.csv" ,
259- package = " sits"
261+ package = " sits"
260262)
261263# retrieve the time series associated with the samples from the data cube
262264points <- sits_get_data(raster_cube , samples = csv_file )
@@ -311,16 +313,16 @@ data("samples_modis_ndvi")
311313data(" point_mt_6bands" )
312314# Train a deep learning model
313315tempcnn_model <- sits_train(
314- samples = samples_modis_ndvi ,
315- ml_method = sits_tempcnn()
316+ samples = samples_modis_ndvi ,
317+ ml_method = sits_tempcnn()
316318)
317319# Select NDVI band of the point to be classified
318320# Classify using TempCNN model
319321# Plot the result
320- point_mt_6bands | >
321- sits_select(bands = " NDVI" ) | >
322- sits_classify(tempcnn_model ) | >
323- plot()
322+ point_mt_6bands | >
323+ sits_select(bands = " NDVI" ) | >
324+ sits_classify(tempcnn_model ) | >
325+ plot()
324326# > | | | 0% | |=================================== | 50% | |======================================================================| 100%
325327```
326328
@@ -342,44 +344,36 @@ using `sits_view()`.
342344# Cube is composed of MOD13Q1 images from the Sinop region in Mato Grosso (Brazil)
343345data_dir <- system.file(" extdata/raster/mod13q1" , package = " sits" )
344346sinop <- sits_cube(
345- source = " BDC" ,
346- collection = " MOD13Q1-6" ,
347- data_dir = data_dir ,
348- delim = " _" ,
349- parse_info = c(" X1" , " X2" , " tile" , " band" , " date" ),
350- progress = FALSE
347+ source = " BDC" ,
348+ collection = " MOD13Q1-6" ,
349+ data_dir = data_dir ,
350+ delim = " _" ,
351+ parse_info = c(" X1" , " X2" , " tile" , " band" , " date" ),
352+ progress = FALSE
351353)
352354# Classify the raster cube, generating a probability file
353355# Filter the pixels in the cube to remove noise
354356probs_cube <- sits_classify(
355- data = sinop ,
356- ml_model = tempcnn_model ,
357- output_dir = tempdir()
357+ data = sinop ,
358+ ml_model = tempcnn_model ,
359+ output_dir = tempdir()
358360)
359361# > | | | 0% | |======================================================================| 100%
360362# apply a bayesian smoothing to remove outliers
361363bayes_cube <- sits_smooth(
362- cube = probs_cube ,
363- output_dir = tempdir()
364+ cube = probs_cube ,
365+ output_dir = tempdir()
364366)
365367# generate a thematic map
366368label_cube <- sits_label_classification(
367- cube = bayes_cube ,
368- output_dir = tempdir()
369+ cube = bayes_cube ,
370+ output_dir = tempdir()
369371)
370372# > | | | 0% | |======================================================================| 100%
371373# plot the the labelled cube
372374plot(label_cube ,
373- title = " Land use and Land cover in Sinop, MT, Brazil in 2018"
375+ title = " Land use and Land cover in Sinop, MT, Brazil in 2018"
374376)
375- # > The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
376- # > which was just loaded, will retire in October 2023.
377- # > Please refer to R-spatial evolution reports for details, especially
378- # > https://r-spatial.org/r/2023/05/15/evolution4.html.
379- # > It may be desirable to make the sf package available;
380- # > package maintainers should consider adding sf to Suggests:.
381- # > The sp package is now running under evolution status 2
382- # > (status 2 uses the sf package in place of rgdal)
383377```
384378
385379<div class =" figure " style =" text-align : center " >
0 commit comments