docker build examples with "Drone + Gitea" for gh200 pytorch (with uvm), torchvision, triton, xformers
-
build pytorch version required for vllm version
- apply gh200 uvm patch before build (https://github.com/feuler/gh200-pytorch/tree/v2.5.1)
-
build torchvision version matching the torch version with the custom built torch pre-installed
-
build xformers (optional) with custom torch and torchvision whl packages pre-installed
-
build triton
- pre-install custom torch whl package
- checkout triton version defined in pytorch version file ".ci/docker/ci_commit_pins/triton.txt" (version number in ".ci/docker/triton_version.txt")
- clone & checkout & build llvm version defined in triton version file "triton/cmake/llvm-hash.txt"
- use llvm build in env as llvm paths (lib/include/root)
- build triton
-
build vllm package with above whl packages pre-installed and use "use_existing_torch.py" vllm script
-
build vllm-docker container by installing above whl packages for torch, torchvision, xformers, triton and vllm
- CUDA: 12.4.1
- Python: 3.11
- Docker image: nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04