-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding microwave plugin with path integrals
added utility for computing impedance from EM fields reused path integrals in smatrix plugin
- Loading branch information
1 parent
251e07a
commit 06306a1
Showing
7 changed files
with
696 additions
and
89 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
import pytest | ||
import numpy as np | ||
|
||
import tidy3d as td | ||
from tidy3d import FieldData | ||
from tidy3d.constants import ETA_0 | ||
from tidy3d.plugins.microwave import VoltageIntegralAA, CurrentIntegralAA, ImpedanceCalculator | ||
import pydantic.v1 as pydantic | ||
from tidy3d.exceptions import DataError | ||
from ..utils import run_emulated | ||
|
||
|
||
# Using similar code as "test_data/test_data_arrays.py" | ||
MON_SIZE = (2, 1, 0) | ||
FIELDS = ("Ex", "Ey", "Hx", "Hy") | ||
FSTART = 0.5e9 | ||
FSTOP = 1.5e9 | ||
F0 = (FSTART + FSTOP) / 2 | ||
FWIDTH = FSTOP - FSTART | ||
FS = np.linspace(FSTART, FSTOP, 5) | ||
FIELD_MONITOR = td.FieldMonitor( | ||
size=MON_SIZE, fields=FIELDS, name="strip_field", freqs=FS, colocate=False | ||
) | ||
STRIP_WIDTH = 1.5 | ||
STRIP_HEIGHT = 0.5 | ||
|
||
SIM_Z = td.Simulation( | ||
size=(2, 1, 1), | ||
grid_spec=td.GridSpec.uniform(dl=0.04), | ||
monitors=[ | ||
FIELD_MONITOR, | ||
td.FieldMonitor(center=(0, 0, 0), size=(1, 1, 1), freqs=FS, name="field"), | ||
td.FieldMonitor( | ||
center=(0, 0, 0), size=(1, 1, 1), freqs=FS, fields=["Ex", "Hx"], name="ExHx" | ||
), | ||
td.ModeMonitor( | ||
center=(0, 0, 0), size=(1, 1, 0), freqs=FS, mode_spec=td.ModeSpec(), name="mode" | ||
), | ||
], | ||
sources=[ | ||
td.PointDipole( | ||
center=(0, 0, 0), | ||
polarization="Ex", | ||
source_time=td.GaussianPulse(freq0=F0, fwidth=FWIDTH), | ||
) | ||
], | ||
run_time=2e-12, | ||
) | ||
|
||
""" Generate the data arrays for testing path integral computations """ | ||
|
||
|
||
def get_xyz( | ||
monitor: td.components.monitor.MonitorType, grid_key: str | ||
) -> tuple[list[float], list[float], list[float]]: | ||
grid = SIM_Z.discretize_monitor(monitor) | ||
x, y, z = grid[grid_key].to_list | ||
return x, y, z | ||
|
||
|
||
def make_stripline_scalar_field_data_array(grid_key: str): | ||
"""Populate FIELD_MONITOR with a idealized stripline mode, where fringing fields are assumed 0.""" | ||
XS, YS, ZS = get_xyz(FIELD_MONITOR, grid_key) | ||
XGRID, YGRID = np.meshgrid(XS, YS, indexing="ij") | ||
XGRID = XGRID.reshape((len(XS), len(YS), 1, 1)) | ||
YGRID = YGRID.reshape((len(XS), len(YS), 1, 1)) | ||
values = np.zeros((len(XS), len(YS), len(ZS), len(FS))) | ||
ones = np.ones((len(XS), len(YS), len(ZS), len(FS))) | ||
XGRID = np.broadcast_to(XGRID, values.shape) | ||
YGRID = np.broadcast_to(YGRID, values.shape) | ||
|
||
# Numpy masks for quickly determining location | ||
above_in_strip = np.logical_and(YGRID >= 0, YGRID <= STRIP_HEIGHT / 2) | ||
below_in_strip = np.logical_and(YGRID < 0, YGRID >= -STRIP_HEIGHT / 2) | ||
within_strip_width = np.logical_and(XGRID >= -STRIP_WIDTH / 2, XGRID < STRIP_WIDTH / 2) | ||
above_and_within = np.logical_and(above_in_strip, within_strip_width) | ||
below_and_within = np.logical_and(below_in_strip, within_strip_width) | ||
# E field is perpendicular to strip surface and magnetic field is parallel | ||
if grid_key == "Ey": | ||
values = np.where(above_and_within, ones, values) | ||
values = np.where(below_and_within, -ones, values) | ||
elif grid_key == "Hx": | ||
values = np.where(above_and_within, -ones / ETA_0, values) | ||
values = np.where(below_and_within, ones / ETA_0, values) | ||
|
||
return td.ScalarFieldDataArray(values, coords=dict(x=XS, y=YS, z=ZS, f=FS)) | ||
|
||
|
||
def make_field_data(): | ||
return FieldData( | ||
monitor=FIELD_MONITOR, | ||
Ex=make_stripline_scalar_field_data_array("Ex"), | ||
Ey=make_stripline_scalar_field_data_array("Ey"), | ||
Hx=make_stripline_scalar_field_data_array("Hx"), | ||
Hy=make_stripline_scalar_field_data_array("Hy"), | ||
symmetry=SIM_Z.symmetry, | ||
symmetry_center=SIM_Z.center, | ||
grid_expanded=SIM_Z.discretize_monitor(FIELD_MONITOR), | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("axis", [0, 1, 2]) | ||
def test_voltage_integral_axes(axis): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[axis] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAA( | ||
center=center, | ||
size=size, | ||
) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
_ = voltage_integral.compute_voltage(sim_data["field"].field_components) | ||
|
||
|
||
@pytest.mark.parametrize("axis", [0, 1, 2]) | ||
def test_current_integral_axes(axis): | ||
length = 0.5 | ||
size = [length, length, length] | ||
size[axis] = 0.0 | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAA( | ||
center=center, | ||
size=size, | ||
) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
_ = current_integral.compute_current(sim_data["field"].field_components) | ||
|
||
|
||
def test_voltage_integral_toggles(): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[0] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAA( | ||
center=center, | ||
size=size, | ||
extrapolate_to_endpoints=True, | ||
snap_path_to_grid=True, | ||
sign="-", | ||
) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
_ = voltage_integral.compute_voltage(sim_data["field"].field_components) | ||
|
||
|
||
def test_current_integral_toggles(): | ||
length = 0.5 | ||
size = [length, length, length] | ||
size[0] = 0.0 | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAA( | ||
center=center, | ||
size=size, | ||
extrapolate_to_endpoints=True, | ||
snap_contour_to_grid=True, | ||
sign="-", | ||
) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
_ = current_integral.compute_current(sim_data["field"].field_components) | ||
|
||
|
||
def test_voltage_missing_fields(): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAA( | ||
center=center, | ||
size=size, | ||
) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
with pytest.raises(DataError): | ||
_ = voltage_integral.compute_voltage(sim_data["ExHx"].field_components) | ||
|
||
|
||
def test_current_missing_fields(): | ||
length = 0.5 | ||
size = [length, length, length] | ||
size[0] = 0.0 | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAA( | ||
center=center, | ||
size=size, | ||
) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
with pytest.raises(DataError): | ||
_ = current_integral.compute_current(sim_data["ExHx"].field_components) | ||
|
||
|
||
def test_tiny_voltage_path(): | ||
length = 0.02 | ||
size = [0, 0, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAA(center=center, size=size, extrapolate_to_endpoints=True) | ||
sim = SIM_Z | ||
sim_data = run_emulated(sim) | ||
_ = voltage_integral.compute_voltage(sim_data["field"].field_components) | ||
|
||
|
||
def test_impedance_calculator(): | ||
with pytest.raises(pydantic.ValidationError): | ||
_ = ImpedanceCalculator(voltage_integral=None, current_integral=None) | ||
|
||
|
||
def test_impedance_accuracy(): | ||
field_data = make_field_data() | ||
# Setup path integrals | ||
size = [0, STRIP_HEIGHT / 2, 0] | ||
center = [0, -STRIP_HEIGHT / 4, 0] | ||
voltage_integral = VoltageIntegralAA(center=center, size=size, extrapolate_to_endpoints=True) | ||
|
||
size = [STRIP_WIDTH * 1.25, STRIP_HEIGHT / 2, 0] | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAA(center=center, size=size) | ||
|
||
def impedance_of_stripline(width, height): | ||
# Assuming no fringing fields, is the same as a parallel plate | ||
# with half the height and carrying twice the current | ||
Z0_parallel_plate = 0.5 * height / width * td.ETA_0 | ||
return Z0_parallel_plate / 2 | ||
|
||
analytic_impedance = impedance_of_stripline(STRIP_WIDTH, STRIP_HEIGHT) | ||
|
||
# Compute impedance using the tool | ||
Z_calc = ImpedanceCalculator( | ||
voltage_integral=voltage_integral, current_integral=current_integral | ||
) | ||
Z1 = Z_calc.compute_impedance(field_data) | ||
Z_calc = ImpedanceCalculator(voltage_integral=voltage_integral, current_integral=None) | ||
Z2 = Z_calc.compute_impedance(field_data) | ||
Z_calc = ImpedanceCalculator(voltage_integral=None, current_integral=current_integral) | ||
Z3 = Z_calc.compute_impedance(field_data) | ||
|
||
# Computation that uses the flux is less accurate, due to staircasing the field | ||
assert np.all(np.isclose(Z1, analytic_impedance, rtol=0.02)) | ||
assert np.all(np.isclose(Z2, analytic_impedance, atol=3.5)) | ||
assert np.all(np.isclose(Z3, analytic_impedance, atol=3.5)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
""" Imports from microwave plugin. """ | ||
|
||
from .path_integrals import VoltageIntegralAA, CurrentIntegralAA | ||
from .impedance_calculator import ImpedanceCalculator | ||
|
||
__all__ = [ | ||
"VoltageIntegralAA", | ||
"CurrentIntegralAA", | ||
"ImpedanceCalculator", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
"""Class for computing characteristic impedance of transmission lines.""" | ||
|
||
from __future__ import annotations | ||
|
||
|
||
import pydantic.v1 as pd | ||
import numpy as np | ||
from typing import Optional | ||
from ...components.data.monitor_data import FieldData, FieldTimeData, ModeSolverData | ||
|
||
from ...components.base import Tidy3dBaseModel | ||
from ...exceptions import ValidationError | ||
|
||
from .path_integrals import VoltageIntegralAA, CurrentIntegralAA | ||
|
||
|
||
class ImpedanceCalculator(Tidy3dBaseModel): | ||
"""Tool for computing the characteristic impedance of a transmission line.""" | ||
|
||
voltage_integral: Optional[VoltageIntegralAA] = pd.Field( | ||
..., | ||
title="Voltage Integral", | ||
description="Integral for computing voltage.", | ||
) | ||
|
||
current_integral: Optional[CurrentIntegralAA] = pd.Field( | ||
..., | ||
title="", | ||
description="Integral for computing current.", | ||
) | ||
|
||
def compute_impedance(self, em_field: FieldData | ModeSolverData | FieldTimeData): | ||
# If both voltage and current integrals have been defined then impedance is computed directly | ||
if self.voltage_integral: | ||
voltage = self.voltage_integral.compute_voltage(em_field.field_components) | ||
if self.current_integral: | ||
current = self.current_integral.compute_current(em_field.field_components) | ||
|
||
# If only one of the integrals has been provided then fall back to using total power (flux) | ||
# with Ohm's law. The input field should cover an area large enough to render the flux computation accurate. | ||
# If the input field is a time signal, then it is real and flux corresponds to the instantaneous power. | ||
# Otherwise the input field is in frequency domain, where flux indicates the time-averaged power 0.5*Re(V*conj(I)) | ||
if not self.voltage_integral: | ||
flux = em_field.flux | ||
if isinstance(em_field, FieldTimeData): | ||
voltage = flux / current | ||
else: | ||
voltage = 2 * flux / np.conj(current) | ||
if not self.current_integral: | ||
flux = em_field.flux | ||
if isinstance(em_field, FieldTimeData): | ||
current = flux / voltage | ||
else: | ||
current = np.conj(2 * flux / voltage) | ||
|
||
return voltage / current | ||
|
||
@pd.validator("current_integral", always=True) | ||
def check_voltage_or_current(cls, val, values): | ||
"""Ensure that 'voltage_integral' and/or 'current_integral' were provided.""" | ||
if not values.get("voltage_integral") and not val: | ||
raise ValidationError( | ||
"Atleast one of 'voltage_integral' or 'current_integral' must be provided." | ||
) | ||
return val |
Oops, something went wrong.