Skip to content

linalg: solve #806

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 33 commits into from
May 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
33 commits
Select commit Hold shift + click to select a range
06bfe4b
templated BLAS/LAPACK initials
perazz Apr 25, 2024
a2afe6b
base implementation
perazz Apr 25, 2024
d929077
exclude `xdp`
perazz Apr 25, 2024
5c817c8
`pure` interfaces
perazz Apr 25, 2024
4cef2ac
cleanup names
perazz Apr 25, 2024
7b7c051
submodule
perazz Apr 25, 2024
0be918e
`real` and `complex` tests
perazz Apr 25, 2024
9906c93
add `real` and `complex` examples
perazz Apr 26, 2024
a5d1b8a
add specs
perazz Apr 26, 2024
c1365ff
document interface
perazz Apr 26, 2024
af70ff9
Merge branch 'master' into linalg_solve
perazz Apr 26, 2024
3de6834
fix resolve conflict
perazz Apr 26, 2024
04f126d
Update doc/specs/stdlib_linalg.md
perazz Apr 27, 2024
7ae0510
Update doc/specs/stdlib_linalg.md
perazz Apr 27, 2024
ed135d9
Update doc/specs/stdlib_linalg.md
perazz Apr 30, 2024
e9bf020
Update doc/specs/stdlib_linalg.md
perazz Apr 30, 2024
3265f8f
Update src/stdlib_linalg.fypp
perazz Apr 30, 2024
77fc5bd
Update doc/specs/stdlib_linalg.md
perazz Apr 30, 2024
b04b3d9
Update doc/specs/stdlib_linalg.md
perazz Apr 30, 2024
8d5e682
Update src/stdlib_linalg_solve.fypp
perazz Apr 30, 2024
4458b88
fix test
perazz Apr 30, 2024
bc13246
Merge branch 'linalg_solve' of github.com:perazz/stdlib into linalg_s…
perazz Apr 30, 2024
316c44a
implement `subroutine` interface
perazz Apr 30, 2024
04f1465
Merge branch 'fortran-lang:master' into linalg_solve
perazz May 8, 2024
5e0620c
specify full-rank
perazz May 9, 2024
c9f5f0c
document `solve_lu`
perazz May 9, 2024
e75bb2f
add `solve_lu` test
perazz May 9, 2024
449d0a2
add pivot
perazz May 9, 2024
b288520
cleanup subroutine example; add preallocated pivot
perazz May 9, 2024
7aab844
document `solve_lu` interface
perazz May 9, 2024
da16d0f
Merge branch 'master' into linalg_solve
perazz May 9, 2024
a05809e
typo
perazz May 9, 2024
5832df5
avoid 128-bit random numbers
perazz May 9, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 101 additions & 0 deletions doc/specs/stdlib_linalg.md
Original file line number Diff line number Diff line change
Expand Up @@ -600,6 +600,107 @@ Specifically, upper Hessenberg matrices satisfy `a_ij = 0` when `j < i-1`, and l
{!example/linalg/example_is_hessenberg.f90!}
```

## `solve` - Solves a linear matrix equation or a linear system of equations.

### Status

Experimental

### Description

This function computes the solution to a linear matrix equation \( A \cdot x = b \), where \( A \) is a square, full-rank, `real` or `complex` matrix.

Result vector or array `x` returns the exact solution to within numerical precision, provided that the matrix is not ill-conditioned.
An error is returned if the matrix is rank-deficient or singular to working precision.
The solver is based on LAPACK's `*GESV` backends.

### Syntax

`Pure` interface:

`x = ` [[stdlib_linalg(module):solve(interface)]] `(a, b)`

Expert interface:

`x = ` [[stdlib_linalg(module):solve(interface)]] `(a, b [, overwrite_a], err)`

### Arguments

`a`: Shall be a rank-2 `real` or `complex` square array containing the coefficient matrix. It is normally an `intent(in)` argument. If `overwrite_a=.true.`, it is an `intent(inout)` argument and is destroyed by the call.

`b`: Shall be a rank-1 or rank-2 array of the same kind as `a`, containing the right-hand-side vector(s). It is an `intent(in)` argument.

`overwrite_a` (optional): Shall be an input logical flag. if `.true.`, input matrix `a` will be used as temporary storage and overwritten. This avoids internal data allocation. This is an `intent(in)` argument.

`err` (optional): Shall be a `type(linalg_state_type)` value. This is an `intent(out)` argument. The function is not `pure` if this argument is provided.

### Return value

For a full-rank matrix, returns an array value that represents the solution to the linear system of equations.

Raises `LINALG_ERROR` if the matrix is singular to working precision.
Raises `LINALG_VALUE_ERROR` if the matrix and rhs vectors have invalid/incompatible sizes.
If `err` is not present, exceptions trigger an `error stop`.

### Example

```fortran
{!example/linalg/example_solve1.f90!}

{!example/linalg/example_solve2.f90!}
```

## `solve_lu` - Solves a linear matrix equation or a linear system of equations (subroutine interface).

### Status

Experimental

### Description

This subroutine computes the solution to a linear matrix equation \( A \cdot x = b \), where \( A \) is a square, full-rank, `real` or `complex` matrix.

Result vector or array `x` returns the exact solution to within numerical precision, provided that the matrix is not ill-conditioned.
An error is returned if the matrix is rank-deficient or singular to working precision.
If all optional arrays are provided by the user, no internal allocations take place.
The solver is based on LAPACK's `*GESV` backends.

### Syntax

Simple (`Pure`) interface:

`call ` [[stdlib_linalg(module):solve_lu(interface)]] `(a, b, x)`

Expert (`Pure`) interface:

`call ` [[stdlib_linalg(module):solve_lu(interface)]] `(a, b, x [, pivot, overwrite_a, err])`

### Arguments

`a`: Shall be a rank-2 `real` or `complex` square array containing the coefficient matrix. It is normally an `intent(in)` argument. If `overwrite_a=.true.`, it is an `intent(inout)` argument and is destroyed by the call.

`b`: Shall be a rank-1 or rank-2 array of the same kind as `a`, containing the right-hand-side vector(s). It is an `intent(in)` argument.

`x`: Shall be a rank-1 or rank-2 array of the same kind and size as `b`, that returns the solution(s) to the system. It is an `intent(inout)` argument, and must have the `contiguous` property.

`pivot` (optional): Shall be a rank-1 array of the same kind and matrix dimension as `a`, providing storage for the diagonal pivot indices. It is an `intent(inout)` arguments, and returns the diagonal pivot indices.

`overwrite_a` (optional): Shall be an input logical flag. if `.true.`, input matrix `a` will be used as temporary storage and overwritten. This avoids internal data allocation. This is an `intent(in)` argument.

### Return value

For a full-rank matrix, returns an array value that represents the solution to the linear system of equations.

Raises `LINALG_ERROR` if the matrix is singular to working precision.
Raises `LINALG_VALUE_ERROR` if the matrix and rhs vectors have invalid/incompatible sizes.
If `err` is not present, exceptions trigger an `error stop`.

### Example

```fortran
{!example/linalg/example_solve3.f90!}
```

## `lstsq` - Computes the least squares solution to a linear matrix equation.

### Status
Expand Down
3 changes: 3 additions & 0 deletions example/linalg/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,5 +20,8 @@ ADD_EXAMPLE(blas_gemv)
ADD_EXAMPLE(lapack_getrf)
ADD_EXAMPLE(lstsq1)
ADD_EXAMPLE(lstsq2)
ADD_EXAMPLE(solve1)
ADD_EXAMPLE(solve2)
ADD_EXAMPLE(solve3)
ADD_EXAMPLE(determinant)
ADD_EXAMPLE(determinant2)
26 changes: 26 additions & 0 deletions example/linalg/example_solve1.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
program example_solve1
use stdlib_linalg_constants, only: sp
use stdlib_linalg, only: solve, linalg_state_type
implicit none

real(sp), allocatable :: A(:,:),b(:),x(:)

! Solve a system of 3 linear equations:
! 4x + 3y + 2z = 25
! -2x + 2y + 3z = -10
! 3x - 5y + 2z = -4

! Note: Fortran is column-major! -> transpose
A = transpose(reshape([ 4, 3, 2, &
-2, 2, 3, &
3,-5, 2], [3,3]))
b = [25,-10,-4]

! Get coefficients of y = coef(1) + x*coef(2) + x^2*coef(3)
x = solve(A,b)

print *, 'solution: ',x
! 5.0, 3.0, -2.0

end program example_solve1

26 changes: 26 additions & 0 deletions example/linalg/example_solve2.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
program example_solve2
use stdlib_linalg_constants, only: sp
use stdlib_linalg, only: solve, linalg_state_type
implicit none

complex(sp), allocatable :: A(:,:),b(:),x(:)

! Solve a system of 3 complex linear equations:
! 2x + iy + 2z = (5-i)
! -ix + (4-3i)y + 6z = i
! 4x + 3y + z = 1

! Note: Fortran is column-major! -> transpose
A = transpose(reshape([(2.0, 0.0),(0.0, 1.0),(2.0,0.0), &
(0.0,-1.0),(4.0,-3.0),(6.0,0.0), &
(4.0, 0.0),(3.0, 0.0),(1.0,0.0)] , [3,3]))
b = [(5.0,-1.0),(0.0,1.0),(1.0,0.0)]

! Get coefficients of y = coef(1) + x*coef(2) + x^2*coef(3)
x = solve(A,b)

print *, 'solution: ',x
! (1.0947,0.3674) (-1.519,-0.4539) (1.1784,-0.1078)

end program example_solve2

32 changes: 32 additions & 0 deletions example/linalg/example_solve3.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
program example_solve3
use stdlib_linalg_constants, only: sp,ilp
use stdlib_linalg, only: solve_lu, linalg_state_type
implicit none

integer(ilp) :: test
integer(ilp), allocatable :: pivot(:)
complex(sp), allocatable :: A(:,:),b(:),x(:)

! Solve a system of 3 complex linear equations:
! 2x + iy + 2z = (5-i)
! -ix + (4-3i)y + 6z = i
! 4x + 3y + z = 1

! Note: Fortran is column-major! -> transpose
A = transpose(reshape([(2.0, 0.0),(0.0, 1.0),(2.0,0.0), &
(0.0,-1.0),(4.0,-3.0),(6.0,0.0), &
(4.0, 0.0),(3.0, 0.0),(1.0,0.0)] , [3,3]))

! Pre-allocate x
allocate(b(size(A,2)),pivot(size(A,2)))
allocate(x,mold=b)

! Call system many times avoiding reallocation
do test=1,100
b = test*[(5.0,-1.0),(0.0,1.0),(1.0,0.0)]
call solve_lu(A,b,x,pivot)
print "(i3,'-th solution: ',*(1x,f12.6))", test,x
end do

end program example_solve3

1 change: 1 addition & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ set(fppFiles
stdlib_linalg_outer_product.fypp
stdlib_linalg_kronecker.fypp
stdlib_linalg_cross_product.fypp
stdlib_linalg_solve.fypp
stdlib_linalg_determinant.fypp
stdlib_linalg_state.fypp
stdlib_optval.fypp
Expand Down
96 changes: 96 additions & 0 deletions src/stdlib_linalg.fypp
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ module stdlib_linalg
public :: eye
public :: lstsq
public :: lstsq_space
public :: solve
public :: solve_lu
public :: solve_lstsq
public :: trace
public :: outer_product
Expand Down Expand Up @@ -228,6 +230,100 @@ module stdlib_linalg
#:endfor
end interface is_hessenberg

! Solve linear system system Ax=b.
interface solve
!! version: experimental
!!
!! Solves the linear system \( A \cdot x = b \) for the unknown vector \( x \) from a square matrix \( A \).
!! ([Specification](../page/specs/stdlib_linalg.html#solve-solves-a-linear-matrix-equation-or-a-linear-system-of-equations))
!!
!!### Summary
!! Interface for solving a linear system arising from a general matrix.
!!
!!### Description
!!
!! This interface provides methods for computing the solution of a linear matrix system.
!! Supported data types include `real` and `complex`. No assumption is made on the matrix
!! structure.
!! The function can solve simultaneously either one (from a 1-d right-hand-side vector `b(:)`)
!! or several (from a 2-d right-hand-side vector `b(:,:)`) systems.
!!
!!@note The solution is based on LAPACK's generic LU decomposition based solvers `*GESV`.
!!@note BLAS/LAPACK backends do not currently support extended precision (``xdp``).
!!
#:for nd,ndsuf,nde in ALL_RHS
#:for rk,rt,ri in RC_KINDS_TYPES
#:if rk!="xdp"
module function stdlib_linalg_${ri}$_solve_${ndsuf}$(a,b,overwrite_a,err) result(x)
!> Input matrix a[n,n]
${rt}$, intent(inout), target :: a(:,:)
!> Right hand side vector or array, b[n] or b[n,nrhs]
${rt}$, intent(in) :: b${nd}$
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
!> [optional] state return flag. On error if not requested, the code will stop
type(linalg_state_type), intent(out) :: err
!> Result array/matrix x[n] or x[n,nrhs]
${rt}$, allocatable, target :: x${nd}$
end function stdlib_linalg_${ri}$_solve_${ndsuf}$
pure module function stdlib_linalg_${ri}$_pure_solve_${ndsuf}$(a,b) result(x)
!> Input matrix a[n,n]
${rt}$, intent(in) :: a(:,:)
!> Right hand side vector or array, b[n] or b[n,nrhs]
${rt}$, intent(in) :: b${nd}$
!> Result array/matrix x[n] or x[n,nrhs]
${rt}$, allocatable, target :: x${nd}$
end function stdlib_linalg_${ri}$_pure_solve_${ndsuf}$
#:endif
#:endfor
#:endfor
end interface solve

! Solve linear system Ax = b using LU decomposition (subroutine interface).
interface solve_lu
!! version: experimental
!!
!! Solves the linear system \( A \cdot x = b \) for the unknown vector \( x \) from a square matrix \( A \).
!! ([Specification](../page/specs/stdlib_linalg.html#solve-lu-solves-a-linear-matrix-equation-or-a-linear-system-of-equations-subroutine-interface))
!!
!!### Summary
!! Subroutine interface for solving a linear system using LU decomposition.
!!
!!### Description
!!
!! This interface provides methods for computing the solution of a linear matrix system using
!! a subroutine. Supported data types include `real` and `complex`. No assumption is made on the matrix
!! structure. Preallocated space for the solution vector `x` is user-provided, and it may be provided
!! for the array of pivot indices, `pivot`. If all pre-allocated work spaces are provided, no internal
!! memory allocations take place when using this interface.
!! The function can solve simultaneously either one (from a 1-d right-hand-side vector `b(:)`)
!! or several (from a 2-d right-hand-side vector `b(:,:)`) systems.
!!
!!@note The solution is based on LAPACK's generic LU decomposition based solvers `*GESV`.
!!@note BLAS/LAPACK backends do not currently support extended precision (``xdp``).
!!
#:for nd,ndsuf,nde in ALL_RHS
#:for rk,rt,ri in RC_KINDS_TYPES
#:if rk!="xdp"
pure module subroutine stdlib_linalg_${ri}$_solve_lu_${ndsuf}$(a,b,x,pivot,overwrite_a,err)
!> Input matrix a[n,n]
${rt}$, intent(inout), target :: a(:,:)
!> Right hand side vector or array, b[n] or b[n,nrhs]
${rt}$, intent(in) :: b${nd}$
!> Result array/matrix x[n] or x[n,nrhs]
${rt}$, intent(inout), contiguous, target :: x${nd}$
!> [optional] Storage array for the diagonal pivot indices
integer(ilp), optional, intent(inout), target :: pivot(:)
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
!> [optional] state return flag. On error if not requested, the code will stop
type(linalg_state_type), optional, intent(out) :: err
end subroutine stdlib_linalg_${ri}$_solve_lu_${ndsuf}$
#:endif
#:endfor
#:endfor
end interface solve_lu

! Least squares solution to system Ax=b, i.e. such that the 2-norm abs(b-Ax) is minimized.
interface lstsq
!! version: experimental
Expand Down
Loading
Loading