|
738 | 738 | "source": [
|
739 | 739 | "### Reading and Visualizing LIDAR clouds\n",
|
740 | 740 | "\n",
|
741 |
| - "The utility functions `read_lidar_points` and `visualize_clouds` are not part of GTSAM, but are part of the gtbook library that accompanies this book. On the [gtbook website](https://gtbook.github.io/gtbook/driving.html) you can find much more detailed documentation as well as the source code, but `help` is very comprehensive for those functions:" |
742 |
| - ] |
743 |
| - }, |
744 |
| - { |
745 |
| - "cell_type": "code", |
746 |
| - "execution_count": null, |
747 |
| - "id": "7CJmeFWrnGA8", |
748 |
| - "metadata": {}, |
749 |
| - "outputs": [ |
750 |
| - { |
751 |
| - "name": "stdout", |
752 |
| - "output_type": "stream", |
753 |
| - "text": [ |
754 |
| - "Help on function read_lidar_points in module gtbook.driving:\n", |
755 |
| - "\n", |
756 |
| - "read_lidar_points(filename: str)\n", |
757 |
| - " Read 3D points in LIDAR scan stored as a binary_little_endian .ply file.\n", |
758 |
| - " \n", |
759 |
| - " Parameters:\n", |
760 |
| - " filename: of ply file\n", |
761 |
| - " \n", |
762 |
| - " Returns:\n", |
763 |
| - " A tuple (3,N) numpy array.\n", |
764 |
| - "\n" |
765 |
| - ] |
766 |
| - } |
767 |
| - ], |
768 |
| - "source": [ |
769 |
| - "help(driving.read_lidar_points)" |
770 |
| - ] |
771 |
| - }, |
772 |
| - { |
773 |
| - "cell_type": "code", |
774 |
| - "execution_count": null, |
775 |
| - "id": "RG3QiiDS08-U", |
776 |
| - "metadata": {}, |
777 |
| - "outputs": [ |
778 |
| - { |
779 |
| - "name": "stdout", |
780 |
| - "output_type": "stream", |
781 |
| - "text": [ |
782 |
| - "Help on function visualize_clouds in module gtbook.driving:\n", |
783 |
| - "\n", |
784 |
| - "visualize_clouds(clouds: list, show_grid_lines: bool = False, cloud_colors=None, marker_size: int = 1, do_subsampling: bool = True)\n", |
785 |
| - " Visualizes cloud(s) in a iterative 3D plot.\n", |
786 |
| - " Adapted from code by 3630 TAs Binit Shah and Jerred Chen\n", |
787 |
| - " \n", |
788 |
| - " Due to browser limitations, rendering above 5 frames requires\n", |
789 |
| - " subsampling of the point clouds, which is done automatically.\n", |
790 |
| - " \n", |
791 |
| - " Example input of arg:\n", |
792 |
| - " clouds = [clouda, cloudb, cloudc]\n", |
793 |
| - " where each cloud is a numpy array of shape (3, num_points).\n", |
794 |
| - " cloud[0] are the x coordinates, cloud[1] is y, and cloud[2] is z.\n", |
795 |
| - " \n", |
796 |
| - " Args:\n", |
797 |
| - " clouds (list): ordered series of point clouds\n", |
798 |
| - " show_grid_lines (bool): plots gridlines\n", |
799 |
| - " cloud_colors (list): colors for each cloud in the visualization\n", |
800 |
| - " marker_size (int): size of each marker\n", |
801 |
| - " do_subsampling (bool): whether or not subsampling occurs\n", |
802 |
| - "\n" |
803 |
| - ] |
804 |
| - } |
805 |
| - ], |
806 |
| - "source": [ |
807 |
| - "help(driving.visualize_clouds)" |
808 |
| - ] |
809 |
| - }, |
810 |
| - { |
811 |
| - "cell_type": "markdown", |
812 |
| - "id": "-JuzVChgrl5z", |
813 |
| - "metadata": {}, |
814 |
| - "source": [ |
815 |
| - "{raw:tex}`\\noindent`\n", |
816 |
| - "While the visualization code is statically rendered in the book, when you open the Colab things should be rendered as interactive plotly scatter plots. Try it!" |
| 741 | + "The utility functions `read_lidar_points` and `visualize_clouds` are not part of GTSAM, but are part of the gtbook library that accompanies this book. On the [gtbook website](https://gtbook.github.io/gtbook/driving.html) {cite:p}`gtbook` you can find much more detailed documentation as well as the source code, but `help` is very comprehensive for those functions. While the visualization code is statically rendered in the book, when you open the Colab things should be rendered as interactive `plotly` scatter plots. Try it!" |
817 | 742 | ]
|
818 | 743 | }
|
819 | 744 | ],
|
|
0 commit comments