A starter application that shows a data collector architecture for retrieval augmented generation.
This codebase is written Python and uses Flask and Jinja2 Templates with the OpenAI API. It stores data in PostgreSQL and uses pgvector to write and query embeddings. A GitHub Action runs tests.
The AI Starter consists of three free-running processes communicating with one Postgres database.
- The data collector is a background process that collects data from one or more sources.
- The data analyzer is another background process that processes collected data.
- The web application collects a query from the user and displays a result to the user.
flowchart LR
embeddings([OpenAI embeddings])
user((User))
app["Web App"]
db[("PostgreSQL (+pgvector)")]
llm([OpenAI completion])
user -- query --> app
app -- create embedding --> embeddings
app -- search embeddings --> db
app -- retrieve documents --> db
app -- fetch text completion --> llm
classDef node font-weight:bold,color:white,stroke:black,stroke-width:2px;
classDef app fill:#3185FC;
classDef db fill:#B744B8;
classDef external fill:#FA9F42;
classDef user fill:#ED6A5A;
class app,collector,analyzer app;
class db db;
class docs,embeddings,llm external;
class user user;
flowchart LR
embeddings([OpenAI embeddings])
docs(["RSS feeds"])
db[("PostgreSQL (+pgvector)")]
collector["Data Collector"]
analyzer["Data Analyzer"]
collector -- fetch documents --> docs
collector -- save documents --> db
analyzer -- retrieve documents --> db
analyzer -- create embeddings --> embeddings
analyzer -- "save embeddings (with reference)" --> db
classDef node font-weight:bold,color:white,stroke:black,stroke-width:2px;
classDef app fill:#3185FC;
classDef db fill:#B744B8;
class app,collector,analyzer app;
classDef external fill:#FA9F42;
classDef user fill:#ED6A5A;
class db db;
class docs,embeddings external;
class user user;
The data collector fetches documents from RSS feeds sources and stores the document text in the database. It also splits documents into chunks of less than 6000 tokens to ensure embedding and text completion calls stay below their token limits. The data analyzer sends document chunks to the OpenAI Embeddings API and uses pgvector to store the embeddings in PostgreSQL.
The web application collects the user's query and creates an embedding with the OpenAI Embeddings API. It then searches the PostgreSQL for similar embeddings (using pgvector) and provides the corresponding chunk of text as context for a query to the OpenAI Chat Completion API.
-
Install uv, PostgreSQL 17, and pgvector.
brew install uv postgresql@17 pgvector brew services run postgresql@17
-
Set up environment variables.
cp .env.example .env source .env
-
Set up the database.
psql postgres < databases/create_databases.sql uv run alembic upgrade head DATABASE_URL="postgresql://localhost:5432/ai_starter_test?user=ai_starter&password=ai_starter" uv run alembic upgrade head
-
Run tests.
uv run -m unittest
-
Run the collector and the analyzer to populate the database, then run the app and navigate to localhost:5001.
uv run -m starter.collect uv run -m starter.analyze uv run -m starter
-
Build container
uv pip compile pyproject.toml -o requirements.txt docker build -t flask-ai-starter .
-
Run with docker
docker run --env-file .env.docker flask-ai-starter ./collect.sh docker run --env-file .env.docker flask-ai-starter ./analyze.sh docker run -p 8081:8081 --env-file .env.docker flask-ai-starter