Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make get_post_fcov methods return posterior covariance matrices of Gaussian Process #66

Merged
merged 1 commit into from
Jan 29, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion physbo/blm/core/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ def get_post_fcov(self, X, Psi=None, diag=True):
physbo.blm.inf.exact.get_post_fcov
"""
if self.method == "exact":
fcov = inf.exact.get_post_fcov(self, X, Psi, diag=True)
fcov = inf.exact.get_post_fcov(self, X, Psi, diag=diag)
else:
pass
return fcov
Expand Down
4 changes: 2 additions & 2 deletions physbo/blm/predictor.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ def get_post_fmean(self, training, test):
self.prepare(training)
return self.blm.get_post_fmean(test.X, test.Z)

def get_post_fcov(self, training, test):
def get_post_fcov(self, training, test, diag=True):
"""
calculates posterior variance-covariance matrix of model

Expand All @@ -123,7 +123,7 @@ def get_post_fcov(self, training, test):
"""
if self.blm.stats is None:
self.prepare(training)
return self.blm.get_post_fcov(test.X, test.Z)
return self.blm.get_post_fcov(test.X, test.Z, diag)

def get_post_params(self, training, test):
"""
Expand Down
6 changes: 3 additions & 3 deletions physbo/search/discrete/policy.py
Original file line number Diff line number Diff line change
Expand Up @@ -360,18 +360,18 @@ def get_post_fmean(self, xs):
self._update_predictor()
return self.predictor.get_post_fmean(self.training, X)

def get_post_fcov(self, xs):
def get_post_fcov(self, xs, diag=True):
"""Calculate covariance of predictor (post distribution)"""
X = self._make_variable_X(xs)
if self.predictor is None:
self._warn_no_predictor("get_post_fcov()")
predictor = gp_predictor(self.config)
predictor.fit(self.training, 0)
predictor.prepare(self.training)
return predictor.get_post_fcov(self.training, X)
return predictor.get_post_fcov(self.training, X, diag)
else:
self._update_predictor()
return self.predictor.get_post_fcov(self.training, X)
return self.predictor.get_post_fcov(self.training, X, diag)

def get_score(
self,
Expand Down