Skip to content

Commit 46ce8c8

Browse files
committed
Qualified import of PropositionalEquality.Core fixing agda#2280
1 parent 90deb34 commit 46ce8c8

File tree

44 files changed

+296
-296
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+296
-296
lines changed

src/Algebra/Solver/Monoid.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ open import Data.Vec.Base using (Vec; lookup)
2222
open import Function.Base using (_∘_; _$_)
2323
open import Relation.Binary.Definitions using (Decidable)
2424

25-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
25+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
2626
import Relation.Binary.Reflection
2727
open import Relation.Nullary
2828
import Relation.Nullary.Decidable as Dec
@@ -128,7 +128,7 @@ prove′ e₁ e₂ =
128128
lemma : normalise e₁ ≡ normalise e₂ ρ ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ
129129
lemma eq ρ =
130130
R.prove ρ e₁ e₂ (begin
131-
⟦ normalise e₁ ⟧⇓ ρ ≡⟨ P.cong (λ e ⟦ e ⟧⇓ ρ) eq ⟩
131+
⟦ normalise e₁ ⟧⇓ ρ ≡⟨ .cong (λ e ⟦ e ⟧⇓ ρ) eq ⟩
132132
⟦ normalise e₂ ⟧⇓ ρ ∎)
133133

134134
-- This procedure can be combined with from-just.

src/Algebra/Solver/Ring.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ open import Algebra.Properties.Semiring.Exp semiring
4141

4242
open import Relation.Nullary.Decidable using (yes; no)
4343
open import Relation.Binary.Reasoning.Setoid setoid
44-
import Relation.Binary.PropositionalEquality.Core as PropEq
44+
import Relation.Binary.PropositionalEquality.Core as
4545
import Relation.Binary.Reflection as Reflection
4646

4747
open import Data.Nat.Base using (ℕ; suc; zero)
@@ -534,7 +534,7 @@ correct (con c) ρ = correct-con c ρ
534534
correct (var i) ρ = correct-var i ρ
535535
correct (p :^ k) ρ = begin
536536
⟦ normalise p ^N k ⟧N ρ ≈⟨ ^N-homo (normalise p) k ρ ⟩
537-
⟦ p ⟧↓ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ PropEq.refl {x = k} ⟩
537+
⟦ p ⟧↓ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ .refl {x = k} ⟩
538538
⟦ p ⟧ ρ ^ k ∎
539539
correct (:- p) ρ = begin
540540
⟦ -N normalise p ⟧N ρ ≈⟨ -N‿-homo (normalise p) ρ ⟩

src/Algebra/Solver/Ring/NaturalCoefficients/Default.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,13 +20,13 @@ import Algebra.Properties.Semiring.Mult as SemiringMultiplication
2020
open import Data.Maybe.Base using (Maybe; map)
2121
open import Data.Nat using (_≟_)
2222
open import Relation.Binary.Consequences using (dec⇒weaklyDec)
23-
import Relation.Binary.PropositionalEquality.Core as P
23+
import Relation.Binary.PropositionalEquality.Core as
2424

2525
open CommutativeSemiring R
2626
open SemiringMultiplication semiring
2727

2828
private
2929
dec : m n Maybe (m × 1# ≈ n × 1#)
30-
dec m n = map (λ { P.refl refl }) (dec⇒weaklyDec _≟_ m n)
30+
dec m n = map (λ { .refl refl }) (dec⇒weaklyDec _≟_ m n)
3131

3232
open import Algebra.Solver.Ring.NaturalCoefficients R dec public

src/Codata/Guarded/Stream/Properties.agda

Lines changed: 42 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open import Data.Product.Base as Prod using (_×_; _,_; proj₁; proj₂)
2020
open import Data.Vec.Base as Vec using (Vec; _∷_)
2121
open import Function.Base using (const; flip; id; _∘′_; _$′_; _⟨_⟩_; _∘₂′_)
2222
open import Level using (Level)
23-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_; cong; cong₂)
23+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_; cong; cong₂)
2424
open import Relation.Binary.PropositionalEquality.Properties
2525
using (module ≡-Reasoning)
2626

@@ -39,7 +39,7 @@ cong-lookup : ∀ {as bs : Stream A} → as ≈ bs → ∀ n → lookup as n ≡
3939
cong-lookup = B.lookup⁺
4040

4141
cong-take : n {as bs : Stream A} as ≈ bs take n as ≡ take n bs
42-
cong-take zero as≈bs = P.refl
42+
cong-take zero as≈bs = .refl
4343
cong-take (suc n) as≈bs = cong₂ _∷_ (as≈bs .head) (cong-take n (as≈bs .tail))
4444

4545
cong-drop : n {as bs : Stream A} as ≈ bs drop n as ≈ drop n bs
@@ -63,7 +63,7 @@ cong-concat ass≈bss = cong-++-concat [] ass≈bss
6363
cong-++-concat : (as : List A) {ass bss} ass ≈ bss ++-concat as ass ≈ ++-concat as bss
6464
cong-++-concat [] ass≈bss .head = cong List⁺.head (ass≈bss .head)
6565
cong-++-concat [] ass≈bss .tail rewrite ass≈bss .head = cong-++-concat _ (ass≈bss .tail)
66-
cong-++-concat (a ∷ as) ass≈bss .head = P.refl
66+
cong-++-concat (a ∷ as) ass≈bss .head = .refl
6767
cong-++-concat (a ∷ as) ass≈bss .tail = cong-++-concat as ass≈bss
6868

6969
cong-interleave : {as bs cs ds : Stream A} as ≈ bs cs ≈ ds
@@ -79,11 +79,11 @@ cong-chunksOf n as≈bs .tail = cong-chunksOf n (cong-drop n as≈bs)
7979
-- Properties of repeat
8080

8181
lookup-repeat : n (a : A) lookup (repeat a) n ≡ a
82-
lookup-repeat zero a = P.refl
82+
lookup-repeat zero a = .refl
8383
lookup-repeat (suc n) a = lookup-repeat n a
8484

8585
splitAt-repeat : n (a : A) splitAt n (repeat a) ≡ (Vec.replicate n a , repeat a)
86-
splitAt-repeat zero a = P.refl
86+
splitAt-repeat zero a = .refl
8787
splitAt-repeat (suc n) a = cong (Prod.map₁ (a ∷_)) (splitAt-repeat n a)
8888

8989
take-repeat : n (a : A) take n (repeat a) ≡ Vec.replicate n a
@@ -93,28 +93,28 @@ drop-repeat : ∀ n (a : A) → drop n (repeat a) ≡ repeat a
9393
drop-repeat n a = cong proj₂ (splitAt-repeat n a)
9494

9595
map-repeat : (f : A B) a map f (repeat a) ≈ repeat (f a)
96-
map-repeat f a .head = P.refl
96+
map-repeat f a .head = .refl
9797
map-repeat f a .tail = map-repeat f a
9898

9999
ap-repeat : (f : A B) a ap (repeat f) (repeat a) ≈ repeat (f a)
100-
ap-repeat f a .head = P.refl
100+
ap-repeat f a .head = .refl
101101
ap-repeat f a .tail = ap-repeat f a
102102

103103
ap-repeatˡ : (f : A B) as ap (repeat f) as ≈ map f as
104-
ap-repeatˡ f as .head = P.refl
104+
ap-repeatˡ f as .head = .refl
105105
ap-repeatˡ f as .tail = ap-repeatˡ f (as .tail)
106106

107107
ap-repeatʳ : (fs : Stream (A B)) a ap fs (repeat a) ≈ map (_$′ a) fs
108-
ap-repeatʳ fs a .head = P.refl
108+
ap-repeatʳ fs a .head = .refl
109109
ap-repeatʳ fs a .tail = ap-repeatʳ (fs .tail) a
110110

111111
interleave-repeat : (a : A) interleave (repeat a) (repeat a) ≈ repeat a
112-
interleave-repeat a .head = P.refl
112+
interleave-repeat a .head = .refl
113113
interleave-repeat a .tail = interleave-repeat a
114114

115115
zipWith-repeat : (f : A B C) a b
116116
zipWith f (repeat a) (repeat b) ≈ repeat (f a b)
117-
zipWith-repeat f a b .head = P.refl
117+
zipWith-repeat f a b .head = .refl
118118
zipWith-repeat f a b .tail = zipWith-repeat f a b
119119

120120
chunksOf-repeat : n (a : A) chunksOf n (repeat a) ≈ repeat (Vec.replicate n a)
@@ -125,52 +125,52 @@ chunksOf-repeat n a = begin go where
125125
go : chunksOf n (repeat a) ≈∞ repeat (Vec.replicate n a)
126126
go .head = take-repeat n a
127127
go .tail =
128-
chunksOf n (drop n (repeat a)) ≡⟨ P.cong (chunksOf n) (drop-repeat n a) ⟩
128+
chunksOf n (drop n (repeat a)) ≡⟨ .cong (chunksOf n) (drop-repeat n a) ⟩
129129
chunksOf n (repeat a) ↺⟨ go ⟩
130130
repeat (Vec.replicate n a) ∎
131131

132132
------------------------------------------------------------------------
133133
-- Properties of map
134134

135135
map-const : (a : A) (bs : Stream B) map (const a) bs ≈ repeat a
136-
map-const a bs .head = P.refl
136+
map-const a bs .head = .refl
137137
map-const a bs .tail = map-const a (bs .tail)
138138

139139
map-id : (as : Stream A) map id as ≈ as
140-
map-id as .head = P.refl
140+
map-id as .head = .refl
141141
map-id as .tail = map-id (as .tail)
142142

143143
map-∘ : (g : B C) (f : A B) as map g (map f as) ≈ map (g ∘′ f) as
144-
map-∘ g f as .head = P.refl
144+
map-∘ g f as .head = .refl
145145
map-∘ g f as .tail = map-∘ g f (as .tail)
146146

147147
map-unfold : (g : B C) (f : A A × B) a
148148
map g (unfold f a) ≈ unfold (Prod.map₂ g ∘′ f) a
149-
map-unfold g f a .head = P.refl
149+
map-unfold g f a .head = .refl
150150
map-unfold g f a .tail = map-unfold g f (proj₁ (f a))
151151

152152
map-drop : (f : A B) n as map f (drop n as) ≡ drop n (map f as)
153-
map-drop f zero as = P.refl
153+
map-drop f zero as = .refl
154154
map-drop f (suc n) as = map-drop f n (as .tail)
155155

156156
map-zipWith : (g : C D) (f : A B C) as bs
157157
map g (zipWith f as bs) ≈ zipWith (g ∘₂′ f) as bs
158-
map-zipWith g f as bs .head = P.refl
158+
map-zipWith g f as bs .head = .refl
159159
map-zipWith g f as bs .tail = map-zipWith g f (as .tail) (bs .tail)
160160

161161
map-interleave : (f : A B) as bs
162162
map f (interleave as bs) ≈ interleave (map f as) (map f bs)
163-
map-interleave f as bs .head = P.refl
163+
map-interleave f as bs .head = .refl
164164
map-interleave f as bs .tail = map-interleave f bs (as .tail)
165165

166166
map-concat : (f : A B) ass map f (concat ass) ≈ concat (map (List⁺.map f) ass)
167167
map-concat f ass = map-++-concat [] ass
168168
where
169169
open Concat
170170
map-++-concat : acc ass map f (++-concat acc ass) ≈ ++-concat (List.map f acc) (map (List⁺.map f) ass)
171-
map-++-concat [] ass .head = P.refl
171+
map-++-concat [] ass .head = .refl
172172
map-++-concat [] ass .tail = map-++-concat (ass .head .List⁺.tail) (ass .tail)
173-
map-++-concat (a ∷ as) ass .head = P.refl
173+
map-++-concat (a ∷ as) ass .head = .refl
174174
map-++-concat (a ∷ as) ass .tail = map-++-concat as ass
175175

176176
map-cycle : (f : A B) as map f (cycle as) ≈ cycle (List⁺.map f as)
@@ -186,29 +186,29 @@ map-cycle f as = run
186186
-- Properties of lookup
187187

188188
lookup-drop : m (as : Stream A) n lookup (drop m as) n ≡ lookup as (m + n)
189-
lookup-drop zero as n = P.refl
189+
lookup-drop zero as n = .refl
190190
lookup-drop (suc m) as n = lookup-drop m (as .tail) n
191191

192192
lookup-map : n (f : A B) as lookup (map f as) n ≡ f (lookup as n)
193-
lookup-map zero f as = P.refl
193+
lookup-map zero f as = .refl
194194
lookup-map (suc n) f as = lookup-map n f (as . tail)
195195

196196
lookup-iterate : n f (x : A) lookup (iterate f x) n ≡ ℕ.iterate f x n
197-
lookup-iterate zero f x = P.refl
197+
lookup-iterate zero f x = .refl
198198
lookup-iterate (suc n) f x = lookup-iterate n f (f x)
199199

200200
lookup-zipWith : n (f : A B C) as bs
201201
lookup (zipWith f as bs) n ≡ f (lookup as n) (lookup bs n)
202-
lookup-zipWith zero f as bs = P.refl
202+
lookup-zipWith zero f as bs = .refl
203203
lookup-zipWith (suc n) f as bs = lookup-zipWith n f (as .tail) (bs .tail)
204204

205205
lookup-unfold : n (f : A A × B) a
206206
lookup (unfold f a) n ≡ proj₂ (f (ℕ.iterate (proj₁ ∘′ f) a n))
207-
lookup-unfold zero f a = P.refl
207+
lookup-unfold zero f a = .refl
208208
lookup-unfold (suc n) f a = lookup-unfold n f (proj₁ (f a))
209209

210210
lookup-tabulate : n (f : A) lookup (tabulate f) n ≡ f n
211-
lookup-tabulate zero f = P.refl
211+
lookup-tabulate zero f = .refl
212212
lookup-tabulate (suc n) f = lookup-tabulate n (f ∘′ suc)
213213

214214
lookup-transpose : n (ass : List (Stream A))
@@ -237,81 +237,81 @@ lookup-tails zero as = B.refl
237237
lookup-tails (suc n) as = lookup-tails n (as .tail)
238238

239239
lookup-evens : n (as : Stream A) lookup (evens as) n ≡ lookup as (n * 2)
240-
lookup-evens zero as = P.refl
240+
lookup-evens zero as = .refl
241241
lookup-evens (suc n) as = lookup-evens n (as .tail .tail)
242242

243243
lookup-odds : n (as : Stream A) lookup (odds as) n ≡ lookup as (suc (n * 2))
244-
lookup-odds zero as = P.refl
244+
lookup-odds zero as = .refl
245245
lookup-odds (suc n) as = lookup-odds n (as .tail .tail)
246246

247247
lookup-interleave-even : n (as bs : Stream A)
248248
lookup (interleave as bs) (n * 2) ≡ lookup as n
249-
lookup-interleave-even zero as bs = P.refl
249+
lookup-interleave-even zero as bs = .refl
250250
lookup-interleave-even (suc n) as bs = lookup-interleave-even n (as .tail) (bs .tail)
251251

252252
lookup-interleave-odd : n (as bs : Stream A)
253253
lookup (interleave as bs) (suc (n * 2)) ≡ lookup bs n
254-
lookup-interleave-odd zero as bs = P.refl
254+
lookup-interleave-odd zero as bs = .refl
255255
lookup-interleave-odd (suc n) as bs = lookup-interleave-odd n (as .tail) (bs .tail)
256256

257257
------------------------------------------------------------------------
258258
-- Properties of take
259259

260260
take-iterate : n f (x : A) take n (iterate f x) ≡ Vec.iterate f x n
261-
take-iterate zero f x = P.refl
261+
take-iterate zero f x = .refl
262262
take-iterate (suc n) f x = cong (x ∷_) (take-iterate n f (f x))
263263

264264
take-zipWith : n (f : A B C) as bs
265265
take n (zipWith f as bs) ≡ Vec.zipWith f (take n as) (take n bs)
266-
take-zipWith zero f as bs = P.refl
266+
take-zipWith zero f as bs = .refl
267267
take-zipWith (suc n) f as bs =
268268
cong (f (as .head) (bs .head) ∷_) (take-zipWith n f (as .tail) (bs . tail))
269269

270270
------------------------------------------------------------------------
271271
-- Properties of drop
272272

273273
drop-drop : m n (as : Stream A) drop n (drop m as) ≡ drop (m + n) as
274-
drop-drop zero n as = P.refl
274+
drop-drop zero n as = .refl
275275
drop-drop (suc m) n as = drop-drop m n (as .tail)
276276

277277
drop-zipWith : n (f : A B C) as bs
278278
drop n (zipWith f as bs) ≡ zipWith f (drop n as) (drop n bs)
279-
drop-zipWith zero f as bs = P.refl
279+
drop-zipWith zero f as bs = .refl
280280
drop-zipWith (suc n) f as bs = drop-zipWith n f (as .tail) (bs .tail)
281281

282282
drop-ap : n (fs : Stream (A B)) as
283283
drop n (ap fs as) ≡ ap (drop n fs) (drop n as)
284-
drop-ap zero fs as = P.refl
284+
drop-ap zero fs as = .refl
285285
drop-ap (suc n) fs as = drop-ap n (fs .tail) (as .tail)
286286

287287
drop-iterate : n f (x : A) drop n (iterate f x) ≡ iterate f (ℕ.iterate f x n)
288-
drop-iterate zero f x = P.refl
288+
drop-iterate zero f x = .refl
289289
drop-iterate (suc n) f x = drop-iterate n f (f x)
290290

291291
------------------------------------------------------------------------
292292
-- Properties of zipWith
293293

294294
zipWith-defn : (f : A B C) as bs
295295
zipWith f as bs ≈ (repeat f ⟨ ap ⟩ as ⟨ ap ⟩ bs)
296-
zipWith-defn f as bs .head = P.refl
296+
zipWith-defn f as bs .head = .refl
297297
zipWith-defn f as bs .tail = zipWith-defn f (as .tail) (bs .tail)
298298

299299
zipWith-const : (as : Stream A) (bs : Stream B)
300300
zipWith const as bs ≈ as
301-
zipWith-const as bs .head = P.refl
301+
zipWith-const as bs .head = .refl
302302
zipWith-const as bs .tail = zipWith-const (as .tail) (bs .tail)
303303

304304
zipWith-flip : (f : A B C) as bs
305305
zipWith (flip f) as bs ≈ zipWith f bs as
306-
zipWith-flip f as bs .head = P.refl
306+
zipWith-flip f as bs .head = .refl
307307
zipWith-flip f as bs .tail = zipWith-flip f (as .tail) (bs. tail)
308308

309309
------------------------------------------------------------------------
310310
-- Properties of interleave
311311

312312
interleave-evens-odds : (as : Stream A) interleave (evens as) (odds as) ≈ as
313-
interleave-evens-odds as .head = P.refl
314-
interleave-evens-odds as .tail .head = P.refl
313+
interleave-evens-odds as .head = .refl
314+
interleave-evens-odds as .tail .head = .refl
315315
interleave-evens-odds as .tail .tail = interleave-evens-odds (as .tail .tail)
316316

317317
------------------------------------------------------------------------

src/Codata/Musical/Colist/Infinite-merge.agda

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ open import Function.Related.TypeIsomorphisms
2525
open import Level
2626
open import Relation.Unary using (Pred)
2727
import Induction.WellFounded as WF
28-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
28+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
2929
open import Relation.Binary.PropositionalEquality.Properties
3030
using (module ≡-Reasoning)
3131
import Relation.Binary.Construct.On as On
@@ -149,9 +149,9 @@ Any-merge {P = P} xss = mk↔ₛ′ (proj₁ ∘ to xss) from to∘from (proj₂
149149

150150
from-injective : {xss} (p₁ p₂ : Any Q xss)
151151
from p₁ ≡ from p₂ p₁ ≡ p₂
152-
from-injective (here (inj₁ p)) (here (inj₁ .p)) P.refl = P.refl
152+
from-injective (here (inj₁ p)) (here (inj₁ .p)) .refl = .refl
153153
from-injective (here (inj₂ p₁)) (here (inj₂ p₂)) eq =
154-
P.cong (here ∘ inj₂) $
154+
.cong (here ∘ inj₂) $
155155
inj₁-injective $
156156
Injection.injective (↔⇒↣ (↔-sym (Any-⋎P _))) $
157157
there-injective eq
@@ -166,7 +166,7 @@ Any-merge {P = P} xss = mk↔ₛ′ (proj₁ ∘ to xss) from to∘from (proj₂
166166
(there-injective eq)
167167
... | ()
168168
from-injective (there {x = _ , xs} p₁) (there p₂) eq =
169-
P.cong there $
169+
.cong there $
170170
from-injective p₁ p₂ $
171171
inj₂-injective $
172172
Injection.injective (↔⇒↣ (↔-sym (Any-⋎P xs))) $
@@ -188,15 +188,15 @@ Any-merge {P = P} xss = mk↔ₛ′ (proj₁ ∘ to xss) from to∘from (proj₂
188188

189189
step : p WF.WfRec (_<′_ on size) InputPred p InputPred p
190190
step ([] , ()) rec
191-
step ((x , xs) ∷ xss , here p) rec = here (inj₁ p) , P.refl
191+
step ((x , xs) ∷ xss , here p) rec = here (inj₁ p) , .refl
192192
step ((x , xs) ∷ xss , there p) rec
193193
with Inverse.to (Any-⋎P xs) p
194194
| Inverse.strictlyInverseʳ (Any-⋎P xs) p
195195
| index-Any-⋎P xs p
196-
... | inj₁ q | P.refl | _ = here (inj₂ q) , P.refl
197-
... | inj₂ q | P.refl | q≤p =
196+
... | inj₁ q | .refl | _ = here (inj₂ q) , .refl
197+
... | inj₂ q | .refl | q≤p =
198198
Product.map there
199-
(P.cong (there ∘ (Inverse.from (Any-⋎P xs)) ∘ inj₂))
199+
(.cong (there ∘ (Inverse.from (Any-⋎P xs)) ∘ inj₂))
200200
(rec (s≤′s q≤p))
201201

202202
to∘from = λ p from-injective _ _ (proj₂ (to xss (from p)))

0 commit comments

Comments
 (0)