Skip to content

Commit 85e1589

Browse files
committed
Qualified import of HeterogeneousEquality.Core fixing agda#2280
1 parent 46ce8c8 commit 85e1589

File tree

47 files changed

+248
-248
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

47 files changed

+248
-248
lines changed

src/Algebra/Construct/LiftedChoice.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ open import Relation.Nullary using (¬_; yes; no)
1717
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_])
1818
open import Data.Product.Base using (_×_; _,_)
1919
open import Level using (Level; _⊔_)
20-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
20+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
2121
open import Relation.Unary using (Pred)
2222

2323
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
@@ -55,8 +55,8 @@ module _ {_≈_ : Rel B ℓ} {_∙_ : Op₂ B}
5555

5656
sel-≡ : Selective _≡_ _◦_
5757
sel-≡ x y with M.sel (f x) (f y)
58-
... | inj₁ _ = inj₁ P.refl
59-
... | inj₂ _ = inj₂ P.refl
58+
... | inj₁ _ = inj₁ .refl
59+
... | inj₂ _ = inj₂ .refl
6060

6161
distrib : x y ((f x) ∙ (f y)) ≈ f (x ◦ y)
6262
distrib x y with M.sel (f x) (f y)

src/Algebra/Operations/CommutativeMonoid.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ open import Data.Fin.Base using (Fin; zero)
1212
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
1313
open import Function.Base using (_∘_)
1414
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
15-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
15+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
1616

1717
module Algebra.Operations.CommutativeMonoid
1818
{s₁ s₂} (CM : CommutativeMonoid s₁ s₂)
@@ -58,7 +58,7 @@ suc n ×′ x = x + n ×′ x
5858
×-congʳ (suc n) x≈x′ = +-cong x≈x′ (×-congʳ n x≈x′)
5959

6060
×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
61-
×-cong {u} P.refl x≈x′ = ×-congʳ u x≈x′
61+
×-cong {u} .refl x≈x′ = ×-congʳ u x≈x′
6262

6363
-- _×_ is homomorphic with respect to _ℕ+_/_+_.
6464

@@ -98,7 +98,7 @@ suc n ×′ x = x + n ×′ x
9898
-- _×′_ preserves equality.
9999

100100
×′-cong : _×′_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
101-
×′-cong {n} {_} {x} {y} P.refl x≈y = begin
101+
×′-cong {n} {_} {x} {y} .refl x≈y = begin
102102
n ×′ x ≈⟨ sym (×≈×′ n x) ⟩
103103
n × x ≈⟨ ×-congʳ n x≈y ⟩
104104
n × y ≈⟨ ×≈×′ n y ⟩

src/Algebra/Properties/CommutativeMonoid/Sum.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ open import Data.Fin.Permutation as Perm using (Permutation; _⟨$⟩ˡ_; _⟨$
1414
open import Data.Fin.Patterns using (0F)
1515
open import Data.Vec.Functional
1616
open import Function.Base using (_∘_)
17-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
17+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
1818
open import Relation.Nullary.Negation using (contradiction)
1919

2020
module Algebra.Properties.CommutativeMonoid.Sum
@@ -90,9 +90,9 @@ sum-permute {zero} {suc n} f π = contradiction π (Perm.refute λ())
9090
sum-permute {suc m} {zero} f π = contradiction π (Perm.refute λ())
9191
sum-permute {suc m} {suc n} f π = begin
9292
sum f ≡⟨⟩
93-
f 0F + sum f/0 ≡⟨ P.cong (_+ sum f/0) (P.cong f (Perm.inverseʳ π)) ⟨
93+
f 0F + sum f/0 ≡⟨ .cong (_+ sum f/0) (.cong f (Perm.inverseʳ π)) ⟨
9494
πf π₀ + sum f/0 ≈⟨ +-congˡ (sum-permute f/0 (Perm.remove π₀ π)) ⟩
95-
πf π₀ + sum (rearrange (π/0 ⟨$⟩ʳ_) f/0) ≡⟨ P.cong (πf π₀ +_) (sum-cong-≗ (P.cong f ∘ Perm.punchIn-permute′ π 0F)) ⟨
95+
πf π₀ + sum (rearrange (π/0 ⟨$⟩ʳ_) f/0) ≡⟨ .cong (πf π₀ +_) (sum-cong-≗ (.cong f ∘ Perm.punchIn-permute′ π 0F)) ⟨
9696
πf π₀ + sum (removeAt πf π₀) ≈⟨ sym (sum-remove πf) ⟩
9797
sum πf ∎
9898
where

src/Algebra/Properties/Monoid/Mult.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
open import Algebra.Bundles using (Monoid)
1010
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; NonZero)
1111
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
12-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
12+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
1313

1414
module Algebra.Properties.Monoid.Mult {a ℓ} (M : Monoid a ℓ) where
1515

@@ -44,7 +44,7 @@ open import Algebra.Definitions.RawMonoid rawMonoid public
4444
×-congʳ (suc n) x≈x′ = +-cong x≈x′ (×-congʳ n x≈x′)
4545

4646
×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
47-
×-cong {n} P.refl x≈x′ = ×-congʳ n x≈x′
47+
×-cong {n} .refl x≈x′ = ×-congʳ n x≈x′
4848

4949
×-congˡ : {x} (_× x) Preserves _≡_ ⟶ _≈_
5050
×-congˡ m≡n = ×-cong m≡n refl

src/Algebra/Properties/Monoid/Mult/TCOptimised.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
open import Algebra.Bundles using (Monoid)
1111
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
1212
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
13-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
13+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
1414

1515
module Algebra.Properties.Monoid.Mult.TCOptimised
1616
{a ℓ} (M : Monoid a ℓ) where
@@ -75,7 +75,7 @@ open import Algebra.Definitions.RawMonoid rawMonoid public
7575
×-congʳ (suc n@(suc _)) x≈y = +-cong (×-congʳ n x≈y) x≈y
7676

7777
×-cong : _×_ Preserves₂ _≡_ ⟶ _≈_ ⟶ _≈_
78-
×-cong {n} P.refl x≈y = ×-congʳ n x≈y
78+
×-cong {n} .refl x≈y = ×-congʳ n x≈y
7979

8080
×-assocˡ : x m n m × (n × x) ≈ (m ℕ.* n) × x
8181
×-assocˡ x m n = begin

src/Algebra/Properties/Semiring/Exp.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
open import Algebra
1010
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
1111
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
12-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
12+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
1313
import Data.Nat.Properties as ℕ
1414

1515
module Algebra.Properties.Semiring.Exp

src/Data/Container/Indexed/WithK.agda

+7-7
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,8 @@ open import Data.Product.Base
2020
open import Function.Base renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_)
2121
open import Level
2222
open import Relation.Unary using (Pred; _⊆_)
23-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_; refl)
24-
open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl)
23+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_; refl)
24+
open import Relation.Binary.HeterogeneousEquality as using (_≅_; refl)
2525
open import Relation.Binary.Indexed.Heterogeneous
2626

2727
------------------------------------------------------------------------
@@ -43,7 +43,7 @@ private
4343
{xs : ⟦ C ⟧ X o₁} {ys : ⟦ C ⟧ X o₂} Extensionality r ℓ
4444
Eq C X X (λ x₁ x₂ x₁ ≅ x₂) xs ys xs ≅ ys
4545
Eq⇒≅ {xs = c , k} {.c , k′} ext (refl , refl , k≈k′) =
46-
H.cong (_,_ c) (ext (λ _ refl) (λ r k≈k′ r r refl))
46+
.cong (_,_ c) (ext (λ _ refl) (λ r k≈k′ r r refl))
4747

4848
setoid : {i o c r s} {I : Set i} {O : Set o}
4949
Container I O c r IndexedSetoid I s _ IndexedSetoid O _ _
@@ -122,7 +122,7 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
122122
module Y = IndexedSetoid Y
123123

124124
lemma : {i j} (eq : i ≡ j) {x}
125-
P.subst Y.Carrier eq (f x) Y.≈ f (P.subst X eq x)
125+
.subst Y.Carrier eq (f x) Y.≈ f (.subst X eq x)
126126
lemma refl = Y.refl
127127

128128
-- In fact, all natural functions of the right type are container
@@ -135,7 +135,7 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
135135
Eq C₂ X.Carrier X.Carrier X._≈_
136136
(proj₁ nt X.Carrier xs) (⟪ m ⟫ X.Carrier {o} xs)
137137
complete {C₁} {C₂} (nt , nat) = m , (λ X xs nat X
138-
(λ { (r , eq) P.subst (IndexedSetoid.Carrier X) eq (proj₂ xs r) })
138+
(λ { (r , eq) .subst (IndexedSetoid.Carrier X) eq (proj₂ xs r) })
139139
(proj₁ xs , (λ r r , refl)))
140140
where
141141

@@ -167,9 +167,9 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
167167
module X = IndexedSetoid X
168168

169169
lemma : {i j k} (eq₁ : i ≡ j) (eq₂ : j ≡ k) {x}
170-
P.subst X.Carrier (P.trans eq₁ eq₂) x
170+
.subst X.Carrier (.trans eq₁ eq₂) x
171171
X.≈
172-
P.subst X.Carrier eq₂ (P.subst X.Carrier eq₁ x)
172+
.subst X.Carrier eq₂ (.subst X.Carrier eq₁ x)
173173
lemma refl refl = X.refl
174174

175175
------------------------------------------------------------------------

src/Data/Container/Relation/Binary/Pointwise.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ open import Data.Product.Base using (_,_; Σ-syntax; -,_; proj₁; proj₂)
1212
open import Function.Base using (_∘_)
1313
open import Level using (_⊔_)
1414
open import Relation.Binary.Core using (REL; _⇒_)
15-
open import Relation.Binary.PropositionalEquality.Core as P
15+
open import Relation.Binary.PropositionalEquality.Core as
1616
using (_≡_; subst; cong)
1717

1818
open import Data.Container.Core using (Container; ⟦_⟧)

src/Data/Container/Relation/Binary/Pointwise/Properties.agda

+5-5
Original file line numberDiff line numberDiff line change
@@ -17,19 +17,19 @@ open import Relation.Binary.Core using (Rel)
1717
open import Relation.Binary.Definitions
1818
using (Reflexive; Symmetric; Transitive)
1919
open import Relation.Binary.Core using (Rel)
20-
open import Relation.Binary.PropositionalEquality.Core as P
20+
open import Relation.Binary.PropositionalEquality.Core as
2121
using (_≡_; subst; cong)
2222

2323
module _ {s p x r} {X : Set x} (C : Container s p) (R : Rel X r) where
2424

2525
refl : Reflexive R Reflexive (Pointwise C R)
26-
refl R-refl = P.refl , λ p R-refl
26+
refl R-refl = .refl , λ p R-refl
2727

2828
sym : Symmetric R Symmetric (Pointwise C R)
29-
sym R-sym (P.refl , f) = P.refl , λ p R-sym (f p)
29+
sym R-sym (.refl , f) = .refl , λ p R-sym (f p)
3030

3131
trans : Transitive R Transitive (Pointwise C R)
32-
trans R-trans (P.refl , f) (P.refl , g) = P.refl , λ p R-trans (f p) (g p)
32+
trans R-trans (.refl , f) (.refl , g) = .refl , λ p R-trans (f p) (g p)
3333

3434
private
3535

@@ -38,4 +38,4 @@ private
3838

3939
Eq⇒≡ : {s p x} {C : Container s p} {X : Set x} {xs ys : ⟦ C ⟧ X}
4040
Extensionality p x Pointwise C _≡_ xs ys xs ≡ ys
41-
Eq⇒≡ ext (P.refl , f≈f′) = cong -,_ (ext f≈f′)
41+
Eq⇒≡ ext (.refl , f≈f′) = cong -,_ (ext f≈f′)

src/Data/Digit.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Data.Nat.DivMod
2121
open import Data.Nat.Induction
2222
open import Relation.Nullary.Decidable using (True; does; toWitness)
2323
open import Relation.Binary.Definitions using (Decidable)
24-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_; refl)
24+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_; refl)
2525
open import Function.Base using (_$_)
2626

2727
------------------------------------------------------------------------
@@ -85,7 +85,7 @@ toDigits base@(suc (suc k)) n = <′-rec Pred helper n
8585
Pred = λ n λ ds fromDigits ds ≡ n
8686

8787
cons : {m} (r : Digit base) Pred m Pred (toℕ r + m * base)
88-
cons r (ds , eq) = (r ∷ ds , P.cong (λ i toℕ r + i * base) eq)
88+
cons r (ds , eq) = (r ∷ ds , .cong (λ i toℕ r + i * base) eq)
8989

9090
open ≤-Reasoning
9191
open +-*-Solver
@@ -104,7 +104,7 @@ toDigits base@(suc (suc k)) n = <′-rec Pred helper n
104104

105105
helper : n <′-Rec Pred n Pred n
106106
helper n rec with n divMod base
107-
... | result zero r eq = ([ r ] , P.sym eq)
107+
... | result zero r eq = ([ r ] , .sym eq)
108108
... | result (suc x) r refl = cons r (rec (lem x k (toℕ r)))
109109

110110
------------------------------------------------------------------------

src/Data/Fin/Substitution/Example.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ open import Data.Fin.Base using (Fin)
2222
open import Data.Vec.Base
2323
open import Relation.Binary.PropositionalEquality as ≡
2424
using (_≡_; refl; sym; cong; cong₂)
25-
open PropEq.≡-Reasoning
25+
open .≡-Reasoning
2626
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
2727
using (Star; ε; _◅_)
2828

src/Data/Graph/Acyclic.agda

+9-9
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ open import Data.Vec.Base as Vec using (Vec; []; _∷_)
2727
open import Data.List.Base as List using (List; []; _∷_)
2828
open import Function.Base using (_$_; _∘′_; _∘_; id)
2929
open import Relation.Nullary
30-
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
30+
open import Relation.Binary.PropositionalEquality.Core as using (_≡_)
3131

3232
------------------------------------------------------------------------
3333
-- A lemma
@@ -186,7 +186,7 @@ private
186186

187187
test-nodes : nodes example ≡ (# 0 , 0) ∷ (# 1 , 1) ∷ (# 2 , 2) ∷
188188
(# 3 , 3) ∷ (# 4 , 4) ∷ []
189-
test-nodes = P.refl
189+
test-nodes = .refl
190190

191191

192192
module _ {ℓ e} {N : Set ℓ} {E : Set e} where
@@ -213,7 +213,7 @@ private
213213

214214
test-edges : edges example ≡ (# 1 , 10 , # 1) ∷ (# 1 , 11 , # 1) ∷
215215
(# 2 , 12 , # 0) ∷ []
216-
test-edges = P.refl
216+
test-edges = .refl
217217

218218
-- The successors of a given node i (edge label × node number relative
219219
-- to i).
@@ -225,7 +225,7 @@ sucs g i = successors $ head (g [ i ])
225225
private
226226

227227
test-sucs : sucs example (# 1) ≡ (10 , # 1) ∷ (11 , # 1) ∷ []
228-
test-sucs = P.refl
228+
test-sucs = .refl
229229

230230
-- The predecessors of a given node i (node number relative to i ×
231231
-- edge label).
@@ -238,13 +238,13 @@ preds (c & g) (suc i) =
238238
(List.map (Prod.map suc id) $ preds g i)
239239
where
240240
p : {e} {E : Set e} {n} (i : Fin n) E × Fin n Maybe (Fin′ (suc i) × E)
241-
p i (e , j) = Maybe.map (λ{ P.refl zero , e }) (decToMaybe (i ≟ j))
241+
p i (e , j) = Maybe.map (λ{ .refl zero , e }) (decToMaybe (i ≟ j))
242242

243243
private
244244

245245
test-preds : preds example (# 3) ≡
246246
(# 1 , 10) ∷ (# 1 , 11) ∷ (# 2 , 12) ∷ []
247-
test-preds = P.refl
247+
test-preds = .refl
248248

249249
------------------------------------------------------------------------
250250
-- Operations
@@ -272,7 +272,7 @@ private
272272
context (# 3 , 3) [] &
273273
context (# 4 , 4) [] &
274274
∅)
275-
test-number = P.refl
275+
test-number = .refl
276276

277277
-- Reverses all the edges in the graph.
278278

@@ -290,7 +290,7 @@ reverse {N = N} {E} g =
290290
private
291291

292292
test-reverse : reverse (reverse example) ≡ example
293-
test-reverse = P.refl
293+
test-reverse = .refl
294294

295295
------------------------------------------------------------------------
296296
-- Views
@@ -330,4 +330,4 @@ private
330330
node 3 [] ∷
331331
node 4 [] ∷
332332
[]
333-
test-toForest = P.refl
333+
test-toForest = .refl

src/Data/List/Membership/Propositional/Properties/Core.agda

+5-5
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open import Data.List.Membership.Propositional
2020
open import Data.Product.Base as Product
2121
using (_,_; proj₁; proj₂; uncurry′; ∃; _×_)
2222
open import Level using (Level)
23-
open import Relation.Binary.PropositionalEquality.Core as P
23+
open import Relation.Binary.PropositionalEquality.Core as
2424
using (_≡_; refl)
2525
open import Relation.Unary using (Pred; _⊆_)
2626

@@ -37,8 +37,8 @@ map∘find : ∀ {P : Pred A p} {xs}
3737
{f : _≡_ (proj₁ p′) ⊆ P}
3838
f refl ≡ proj₂ (proj₂ p′)
3939
Any.map f (proj₁ (proj₂ p′)) ≡ p
40-
map∘find (here p) hyp = P.cong here hyp
41-
map∘find (there p) hyp = P.cong there (map∘find p hyp)
40+
map∘find (here p) hyp = .cong here hyp
41+
map∘find (there p) hyp = .cong there (map∘find p hyp)
4242

4343
find∘map : {P : Pred A p} {Q : Pred A q}
4444
{xs : List A} (p : Any P xs) (f : P ⊆ Q)
@@ -61,13 +61,13 @@ find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl
6161
lose∘find : {P : Pred A p} {xs : List A}
6262
(p : Any P xs)
6363
uncurry′ lose (proj₂ (find p)) ≡ p
64-
lose∘find p = map∘find p P.refl
64+
lose∘find p = map∘find p .refl
6565

6666
find∘lose : (P : Pred A p) {x xs}
6767
(x∈xs : x ∈ xs) (pp : P x)
6868
find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp)
6969
find∘lose P x∈xs p
70-
rewrite find∘map x∈xs (flip (P.subst P) p)
70+
rewrite find∘map x∈xs (flip (.subst P) p)
7171
| find-∈ x∈xs
7272
= refl
7373

0 commit comments

Comments
 (0)