@@ -20,8 +20,8 @@ open import Data.Product.Base
20
20
open import Function.Base renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_)
21
21
open import Level
22
22
open import Relation.Unary using (Pred; _⊆_)
23
- open import Relation.Binary.PropositionalEquality.Core as P using (_≡_; refl)
24
- open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl)
23
+ open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_; refl)
24
+ open import Relation.Binary.HeterogeneousEquality as ≅ using (_≅_; refl)
25
25
open import Relation.Binary.Indexed.Heterogeneous
26
26
27
27
------------------------------------------------------------------------
@@ -43,7 +43,7 @@ private
43
43
{xs : ⟦ C ⟧ X o₁} {ys : ⟦ C ⟧ X o₂} → Extensionality r ℓ →
44
44
Eq C X X (λ x₁ x₂ → x₁ ≅ x₂) xs ys → xs ≅ ys
45
45
Eq⇒≅ {xs = c , k} {.c , k′} ext (refl , refl , k≈k′) =
46
- H .cong (_,_ c) (ext (λ _ → refl) (λ r → k≈k′ r r refl))
46
+ ≅ .cong (_,_ c) (ext (λ _ → refl) (λ r → k≈k′ r r refl))
47
47
48
48
setoid : ∀ {i o c r s} {I : Set i} {O : Set o} →
49
49
Container I O c r → IndexedSetoid I s _ → IndexedSetoid O _ _
@@ -122,7 +122,7 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
122
122
module Y = IndexedSetoid Y
123
123
124
124
lemma : ∀ {i j} (eq : i ≡ j) {x} →
125
- P .subst Y.Carrier eq (f x) Y.≈ f (P .subst X eq x)
125
+ ≡ .subst Y.Carrier eq (f x) Y.≈ f (≡ .subst X eq x)
126
126
lemma refl = Y.refl
127
127
128
128
-- In fact, all natural functions of the right type are container
@@ -135,7 +135,7 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
135
135
Eq C₂ X.Carrier X.Carrier X._≈_
136
136
(proj₁ nt X.Carrier xs) (⟪ m ⟫ X.Carrier {o} xs)
137
137
complete {C₁} {C₂} (nt , nat) = m , (λ X xs → nat X
138
- (λ { (r , eq) → P .subst (IndexedSetoid.Carrier X) eq (proj₂ xs r) })
138
+ (λ { (r , eq) → ≡ .subst (IndexedSetoid.Carrier X) eq (proj₂ xs r) })
139
139
(proj₁ xs , (λ r → r , refl)))
140
140
where
141
141
@@ -167,9 +167,9 @@ module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
167
167
module X = IndexedSetoid X
168
168
169
169
lemma : ∀ {i j k} (eq₁ : i ≡ j) (eq₂ : j ≡ k) {x} →
170
- P .subst X.Carrier (P .trans eq₁ eq₂) x
170
+ ≡ .subst X.Carrier (≡ .trans eq₁ eq₂) x
171
171
X.≈
172
- P .subst X.Carrier eq₂ (P .subst X.Carrier eq₁ x)
172
+ ≡ .subst X.Carrier eq₂ (≡ .subst X.Carrier eq₁ x)
173
173
lemma refl refl = X.refl
174
174
175
175
------------------------------------------------------------------------
0 commit comments