Skip to content

Fix camel case for csv json cum #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 2, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions SUMMARY.md
Original file line number Diff line number Diff line change
@@ -212,10 +212,10 @@
* [Groupby.std](api-reference/groupby/groupby.std.md)
* [Groupby.var](api-reference/groupby/groupby.var.md)
* [Groupby.count](api-reference/groupby/groupby.count.md)
* [Groupby.cumsum](api-reference/groupby/groupby.cumsum.md)
* [Groupby.cummax](api-reference/groupby/groupby.cummax.md)
* [Groupby.cummin](api-reference/groupby/groupby.cummin.md)
* [Groupby.cumprod](api-reference/groupby/groupby.cumprod.md)
* [Groupby.cumSum](api-reference/groupby/groupby.cumsum.md)
* [Groupby.cumMax](api-reference/groupby/groupby.cummax.md)
* [Groupby.cumMin](api-reference/groupby/groupby.cummin.md)
* [Groupby.cumProd](api-reference/groupby/groupby.cumprod.md)
* [Groupby.agg](api-reference/groupby/groupby.agg.md)
* [User Guides](examples/README.md)
* [Migrating to the stable version of Danfo.js](examples/migrating-to-the-stable-version-of-danfo.js.md)
2 changes: 1 addition & 1 deletion api-reference/dataframe/danfo.dataframe.cumsum.md
Original file line number Diff line number Diff line change
@@ -64,7 +64,7 @@ data = [[11, 20, 3], [1, 15, 6], [2, 30, 40], [2, 89, 78]]
cols = ["A", "B", "C"]

let df = new dfd.DataFrame(data, { columns: cols })
let new_df = df.cumsum({ axis: 1 })
let new_df = df.cumSum({ axis: 1 })

new_df.print()
```
2 changes: 1 addition & 1 deletion api-reference/dataframe/danfo.dataframe.groupby.md
Original file line number Diff line number Diff line change
@@ -65,7 +65,7 @@ A groupby operation will return a GroupBy class object. You can apply any of the
6. [cumSum](danfo.dataframe.cumsum.md)
7. [cumMax](danfo.dataframe.cummax.md)
8. [cumProd](danfo.dataframe.cumprod.md)
9. [cummin](danfo.dataframe.cummin.md)
9. [cumMin](danfo.dataframe.cummin.md)
10. [max](danfo.dataframe.max.md)
11. [min](danfo.dataframe.min.md)

2 changes: 1 addition & 1 deletion api-reference/dataframe/dataframe.to_csv.md
Original file line number Diff line number Diff line change
@@ -69,7 +69,7 @@ Abs,Count,country code

let df = new dfd.DataFrame(data);

const csv = df.to_csv({ download: false });
const csv = df.toCSV({ download: false });
console.log(csv);
</script>
</body>
2 changes: 1 addition & 1 deletion api-reference/dataframe/dataframe.to_json.md
Original file line number Diff line number Diff line change
@@ -82,7 +82,7 @@ console.log(jsonObjRow);

let df = new dfd.DataFrame(data);

const csv = df.to_csv({ download: false });
const csv = df.toCSV({ download: false });
console.log(csv);
</script>
</body>
20 changes: 10 additions & 10 deletions api-reference/groupby.md
Original file line number Diff line number Diff line change
@@ -37,11 +37,11 @@ description: >-
| [`GroupBy.bfill`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.bfill.html#pandas.core.groupby.GroupBy.bfill)\(\[limit\]\) | Backward fill the values. |
| [`GroupBy.backfill`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.backfill.html#pandas.core.groupby.GroupBy.backfill)\(\[limit\]\) | Backward fill the values. |
| [`GroupBy.count`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.count.html#pandas.core.groupby.GroupBy.count)\(\) | Compute count of group, excluding missing values. |
| [`GroupBy.cumcount`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cumcount.html#pandas.core.groupby.GroupBy.cumcount)\(\[ascending\]\) | Number each item in each group from 0 to the length of that group - 1. |
| [`GroupBy.cummax`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cummax.html#pandas.core.groupby.GroupBy.cummax)\(\[axis\]\) | Cumulative max for each group. |
| [`GroupBy.cummin`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cummin.html#pandas.core.groupby.GroupBy.cummin)\(\[axis\]\) | Cumulative min for each group. |
| [`GroupBy.cumprod`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cumprod.html#pandas.core.groupby.GroupBy.cumprod)\(\[axis\]\) | Cumulative product for each group. |
| [`GroupBy.cumsum`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cumsum.html#pandas.core.groupby.GroupBy.cumsum)\(\[axis\]\) | Cumulative sum for each group. |
| [`GroupBy.cumCount`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cumcount.html#pandas.core.groupby.GroupBy.cumcount)\(\[ascending\]\) | Number each item in each group from 0 to the length of that group - 1. |
| [`GroupBy.cumMax`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cummax.html#pandas.core.groupby.GroupBy.cummax)\(\[axis\]\) | Cumulative max for each group. |
| [`GroupBy.cumMin`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cummin.html#pandas.core.groupby.GroupBy.cummin)\(\[axis\]\) | Cumulative min for each group. |
| [`GroupBy.cumProd`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cumprod.html#pandas.core.groupby.GroupBy.cumprod)\(\[axis\]\) | Cumulative product for each group. |
| [`GroupBy.cumSum`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.cumsum.html#pandas.core.groupby.GroupBy.cumsum)\(\[axis\]\) | Cumulative sum for each group. |
| [`GroupBy.ffill`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.ffill.html#pandas.core.groupby.GroupBy.ffill)\(\[limit\]\) | Forward fill the values. |
| [`GroupBy.first`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.first.html#pandas.core.groupby.GroupBy.first)\(\[numeric\_only, min\_count\]\) | Compute first of group values. |
| [`GroupBy.head`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.head.html#pandas.core.groupby.GroupBy.head)\(\[n\]\) | Return first n rows of each group. |
@@ -74,11 +74,11 @@ The following methods are available in both `SeriesGroupBy` and `DataFrameGroupB
| [`DataFrameGroupBy.corr`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.corr.html#pandas.core.groupby.DataFrameGroupBy.corr) | Compute pairwise correlation of columns, excluding NA/null values. |
| [`DataFrameGroupBy.count`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.count.html#pandas.core.groupby.DataFrameGroupBy.count)\(\) | Compute count of group, excluding missing values. |
| [`DataFrameGroupBy.cov`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cov.html#pandas.core.groupby.DataFrameGroupBy.cov) | Compute pairwise covariance of columns, excluding NA/null values. |
| [`DataFrameGroupBy.cumcount`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cumcount.html#pandas.core.groupby.DataFrameGroupBy.cumcount)\(\[ascending\]\) | Number each item in each group from 0 to the length of that group - 1. |
| [`DataFrameGroupBy.cummax`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cummax.html#pandas.core.groupby.DataFrameGroupBy.cummax)\(\[axis\]\) | Cumulative max for each group. |
| [`DataFrameGroupBy.cummin`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cummin.html#pandas.core.groupby.DataFrameGroupBy.cummin)\(\[axis\]\) | Cumulative min for each group. |
| [`DataFrameGroupBy.cumprod`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cumprod.html#pandas.core.groupby.DataFrameGroupBy.cumprod)\(\[axis\]\) | Cumulative product for each group. |
| [`DataFrameGroupBy.cumsum`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cumsum.html#pandas.core.groupby.DataFrameGroupBy.cumsum)\(\[axis\]\) | Cumulative sum for each group. |
| [`DataFrameGroupBy.cumCount`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cumcount.html#pandas.core.groupby.DataFrameGroupBy.cumcount)\(\[ascending\]\) | Number each item in each group from 0 to the length of that group - 1. |
| [`DataFrameGroupBy.cumMax`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cummax.html#pandas.core.groupby.DataFrameGroupBy.cummax)\(\[axis\]\) | Cumulative max for each group. |
| [`DataFrameGroupBy.cumMin`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cummin.html#pandas.core.groupby.DataFrameGroupBy.cummin)\(\[axis\]\) | Cumulative min for each group. |
| [`DataFrameGroupBy.cumProd`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cumprod.html#pandas.core.groupby.DataFrameGroupBy.cumprod)\(\[axis\]\) | Cumulative product for each group. |
| [`DataFrameGroupBy.cumSum`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.cumsum.html#pandas.core.groupby.DataFrameGroupBy.cumsum)\(\[axis\]\) | Cumulative sum for each group. |
| [`DataFrameGroupBy.describe`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.describe.html#pandas.core.groupby.DataFrameGroupBy.describe)\(\*\*kwargs\) | Generate descriptive statistics. |
| [`DataFrameGroupBy.diff`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.diff.html#pandas.core.groupby.DataFrameGroupBy.diff) | First discrete difference of element. |
| [`DataFrameGroupBy.ffill`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.DataFrameGroupBy.ffill.html#pandas.core.groupby.DataFrameGroupBy.ffill)\(\[limit\]\) | Forward fill the values. |
8 changes: 4 additions & 4 deletions api-reference/groupby/README.md
Original file line number Diff line number Diff line change
@@ -21,10 +21,10 @@ description: 'GroupBy objects are returned by groupby calls: danfo.DataFrame.gro
| | |
| :--- | :--- |
| [`GroupBy.count`](groupby.count.md) | Compute count of group, excluding missing values. |
| [`GroupBy.cummax`](groupby.cummax.md) | Cumulative max for each group. |
| [`GroupBy.cummin`](groupby.cummin.md) | Cumulative min for each group. |
| [`GroupBy.cumprod`](groupby.cumprod.md) | Cumulative product for each group. |
| [`GroupBy.cumsum`](groupby.cumsum.md) | Cumulative sum for each group. |
| [`GroupBy.cumMax`](groupby.cummax.md) | Cumulative max for each group. |
| [`GroupBy.cumMin`](groupby.cummin.md) | Cumulative min for each group. |
| [`GroupBy.cumProd`](groupby.cumprod.md) | Cumulative product for each group. |
| [`GroupBy.cumSum`](groupby.cumsum.md) | Cumulative sum for each group. |
| [`GroupBy.max`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.GroupBy.max.html#pandas.core.groupby.GroupBy.max) | Compute max of group values. |
| [`GroupBy.mean`](groupby.mean.md) | Compute mean of groups, excluding missing values. |
| [`GroupBy.min`](groupby.min.md) | Compute min of group values. |
4 changes: 2 additions & 2 deletions api-reference/groupby/groupby.cummax.md
Original file line number Diff line number Diff line change
@@ -73,7 +73,7 @@ Shape: (5,2)
╚═══╧═══════════════════╧═══════════════════╝
```

Obtain the cumsum for two columns for each group, group by one column
Obtain the cumMax for two columns for each group, group by one column

{% tabs %}
{% tab title="Node" %}
@@ -134,7 +134,7 @@ grp.col(["C","D"]).cumMax().tail().print()
╚════╧═══════════════════╧═══════════════════╧═══════════════════╝
```

Obtain the cummax for a column for each group, group by two columns
Obtain the cumMax for a column for each group, group by two columns

{% tabs %}
{% tab title="Node" %}
6 changes: 3 additions & 3 deletions api-reference/groupby/groupby.cummin.md
Original file line number Diff line number Diff line change
@@ -4,7 +4,7 @@ description: Obtain the cummulative minimum per groups for each column

# Groupby.cumMin

> danfo.Groupby.**cummin**\(\) \[[source](https://github.com/javascriptdata/danfojs/blob/4993242be7847ba7583dd40ed0188929898b8fd6/src/danfojs-base/aggregators/groupby.ts#L497)\]
> danfo.Groupby.**cumMin**\(\) \[[source](https://github.com/javascriptdata/danfojs/blob/4993242be7847ba7583dd40ed0188929898b8fd6/src/danfojs-base/aggregators/groupby.ts#L497)\]

**Parameters**: None

@@ -75,7 +75,7 @@ grpColC.cumMin().tail().print()
╚═══╧═══════════════════╧═══════════════════╝
```

Obtain the cummin for two columns for each group, group by one column
Obtain the cumMin for two columns for each group, group by one column

{% tabs %}
{% tab title="Node" %}
@@ -137,7 +137,7 @@ grpCol.cumMin().tail().print()
╚════╧═══════════════════╧═══════════════════╧═══════════════════╝
```

Obtain the cummin for a column for each group, group by two columns
Obtain the cumMin for a column for each group, group by two columns

{% tabs %}
{% tab title="Node" %}
8 changes: 4 additions & 4 deletions api-reference/groupby/groupby.cumprod.md
Original file line number Diff line number Diff line change
@@ -4,7 +4,7 @@ description: Obtain the cumulative product per group for each column

# Groupby.cumProd

> danfo.Groupby.**cumprod**\(\) \[[source](https://github.com/javascriptdata/danfojs/blob/65f9b3753389b08101d4bb00a2d6488255476aaf/src/danfojs-base/aggregators/groupby.ts#L489)\]
> danfo.Groupby.**cumProd**\(\) \[[source](https://github.com/javascriptdata/danfojs/blob/65f9b3753389b08101d4bb00a2d6488255476aaf/src/danfojs-base/aggregators/groupby.ts#L489)\]

**Parameters**: None

@@ -74,7 +74,7 @@ grpCol.cumProd().tail().print()
╚═══╧═══════════════════╧═══════════════════╝
```

Obtain the cumprod for two columns for each groups, group by one column
Obtain the cumProd for two columns for each groups, group by one column

{% tabs %}
{% tab title="Node" %}
@@ -122,7 +122,7 @@ grpCol.cumProd().print()
╚════════════╧═══════════════════╧═══════════════════╧═══════════════════╝
```

Obtain the cumprod for a column for each group, group by two columns
Obtain the cumProd for a column for each group, group by two columns

{% tabs %}
{% tab title="Node" %}
@@ -170,7 +170,7 @@ grpCol.cumProd().print()
╚════════════╧═══════════════════╧═══════════════════╧═══════════════════╝
```

Obtain the cumprod for two columns for each group, group by two columns
Obtain the cumProd for two columns for each group, group by two columns

{% tabs %}
{% tab title="Node" %}
4 changes: 2 additions & 2 deletions api-reference/groupby/groupby.cumsum.md
Original file line number Diff line number Diff line change
@@ -2,9 +2,9 @@
description: Obtain the cumulative sum per groups for each column
---

# Groupby.cumsum
# Groupby.cumSum

> danfo.Groupby.**cumsum**() \[[source](https://github.com/javascriptdata/danfojs/blob/0d33e344b80a3ed54c91c9393ac3b583d4b0b1a4/src/danfojs-base/aggregators/groupby.ts#L473)]
> danfo.Groupby.**cumSum**() \[[source](https://github.com/javascriptdata/danfojs/blob/0d33e344b80a3ed54c91c9393ac3b583d4b0b1a4/src/danfojs-base/aggregators/groupby.ts#L473)]

**Parameters**: None

10 changes: 5 additions & 5 deletions api-reference/input-output/README.md
Original file line number Diff line number Diff line change
@@ -8,11 +8,11 @@ description: Functions for reading tabular/structured data into DataFrame/Series

| \`\` | |
| ----------------------------------- | -------------------------------------------------------- |
| [`read_csv`](danfo.read_csv.md) | Read a comma-separated values (csv) file into DataFrame. |
| [`readCSV`](danfo.read_csv.md) | Read a comma-separated values (csv) file into DataFrame. |
| [`read_excel`](danfo.read_excel.md) | Read an Excel values (xlsx) file into DataFrame. |
| [`read_json`](danfo.read_json.md) | Read a JSON values (json) file into DataFrame. |
| [to_csv](danfo.to_csv.md) | Writes a DataFrame/Series to CSV file |
| [`readJSON`](danfo.read_json.md) | Read a JSON values (json) file into DataFrame. |
| [toCSV](danfo.to_csv.md) | Writes a DataFrame/Series to CSV file |
| [to_excel](danfo.to_excel.md) | Writes a DataFrame/Series to Excel file |
| [to_json](danfo.to_json.md) | Writes a DataFrame/Series to JSON file |
| [toJSON](danfo.to_json.md) | Writes a DataFrame/Series to JSON file |

Writing to `CSV` and `JSON` can also be done directly from DataFrame or Series objects (e.g. [`DataFrame.to_csv()`](../dataframe/dataframe.to_csv.md))
Writing to `CSV` and `JSON` can also be done directly from DataFrame or Series objects (e.g. [`DataFrame.toCSV()`](../dataframe/dataframe.to_csv.md))
2 changes: 1 addition & 1 deletion api-reference/plotting/violin-plots.md
Original file line number Diff line number Diff line change
@@ -122,7 +122,7 @@ export default App;
<div id="plot_div"></div>
<script>

dfd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/master/doc/data/titanic.csv")
dfd.readCSV("https://raw.githubusercontent.com/pandas-dev/pandas/master/doc/data/titanic.csv")
.then(df => {

sub_df = df.loc({ columns: ["Age", "Fare"] })
Original file line number Diff line number Diff line change
@@ -77,7 +77,7 @@ async function load_process_data() {
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╧═══════════════════╧═══════════════════╧═══════════════════╧═══════════════════╧═══════════════════╧═══════════════════╝
```

You wrote an async function because loading a dataset over the internet takes a few seconds depending on your network. Inside the async function, you pass in the url of the titanic dataset to the read\_csv function.
You wrote an async function because loading a dataset over the internet takes a few seconds depending on your network. Inside the async function, you pass in the url of the titanic dataset to the readCSV function.

Next you'll perform some basic data preprocessing. The [ctypes](../api-reference/dataframe/dataframe.dtypes.md) attribute returns the column data types:

2 changes: 1 addition & 1 deletion getting-started.md
Original file line number Diff line number Diff line change
@@ -2368,7 +2368,7 @@ dfd.readCSV("/home/Desktop/titanic.csv")

<script>

dfd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
dfd.readCSV("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
.then(df => {

//do something like display descriptive statistics