Skip to content

Latest commit

 

History

History
85 lines (54 loc) · 2.99 KB

README.md

File metadata and controls

85 lines (54 loc) · 2.99 KB

Baby Bliss Bot

An exploratory research project to generate new Bliss vocabulary using machine learning techniques.

The Bliss language is an Augmentative and Alternative Communication (AAC) language used by individuals with severe speech and physical impairments around the world, but also by others for language learning and support, or just for the fascination and joy of this unique language representation. It is a semantic graphical language that is currently composed of more than 5000 authorized symbols - Bliss-characters and Bliss-words. It is a generative language that allows its users to create new Bliss-words as needed.

We are exploring the generation of new Bliss vocabulary using emerging AI techniques, including Large Language Models (LLM), OCR, and other models for text generation and completion.

Local Installation

Prerequisites

  • Python 3
    • Version 3.9+. On Mac, Homebrew is the easiest way to install.

Clone the Repository

  • Clone the project from GitHub. Create a fork with your GitHub account, then run the following in your command line (make sure to replace your-username with your username):
git clone https://github.com/your-username/baby-bliss-bot
cd baby-bliss-bot

Create/Activitate Virtual Environment

Always activate and use the python virtual environment to maintain an isolated environment for project's dependencies.

  • Create the virtual environment (one time setup):

    • python -m venv .venv
  • Activate (every command-line session):

    • Windows: .\.venv\Scripts\activate
    • Mac/Linux: source .venv/bin/activate

Install Python Dependencies

Run in the baby-bliss-bot directory:

  • pip install -r requirements.txt

Linting

Run the following command to lint all python scripts:

  • flake8

Model Experiments

We performed experiments with a number of existing models listed below to understand how useful they are in helping with generating new Bliss symbols etc.

StyleGAN3

Conclusion: not useful

See the TrainStyleGAN3Model.md in the documentation folder for details on how to train this model, training results and the conclusion about how useful it is.

Texture Inversion

Concolusion: not useful

See the Texture Inversion documentation for details.

Notebooks

/notebooks directory contains all notebooks used for training or fine-tuning various models. Each notebook usually comes with a accompanying dockerfile.yml to elaborate the environment that the notebook was running in.

Jobs

/jobs directory contains all jobs used for training or fine-tuning various models.

Utility Scripts

All utility functions are in the utils directory.

See README.md in the utils directory for details.