Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support old-style TensorFlow events (tensorboard) #2467

Merged
merged 6 commits into from
Feb 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,23 @@
import rfc3339
import tensorflow as tf
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
from tensorboard.backend.event_processing.tag_types import TENSORS
from tensorboard.backend.event_processing.tag_types import SCALARS, TENSORS

from pkg.metricscollector.v1beta1.common import const


def _should_consider(tag: str, metric_name: str, tfefile: str) -> bool:
tfefile_parent_dir = (
os.path.dirname(metric_name)
if len(metric_name.split("/")) >= 2
else os.path.dirname(tfefile)
)
basedir_name = os.path.dirname(tfefile)
return tag.startswith(metric_name.split("/")[-1]) and basedir_name.endswith(
tfefile_parent_dir
)


class TFEventFileParser:
def __init__(self, metric_names):
self.metric_names = metric_names
Expand All @@ -47,31 +59,36 @@ def find_all_files(directory):

def parse_summary(self, tfefile):
metric_logs = []
event_accumulator = EventAccumulator(tfefile, size_guidance={TENSORS: 0})
event_accumulator = EventAccumulator(
tfefile, size_guidance={SCALARS: 0, TENSORS: 0}
)
event_accumulator.Reload()
for tag in event_accumulator.Tags()[TENSORS]:
tags = event_accumulator.Tags()
for tag in tags[TENSORS]:
for m in self.metric_names:
tfefile_parent_dir = (
os.path.dirname(m)
if len(m.split("/")) >= 2
else os.path.dirname(tfefile)
)
basedir_name = os.path.dirname(tfefile)
if not tag.startswith(m.split("/")[-1]) or not basedir_name.endswith(
tfefile_parent_dir
):
continue

for tensor in event_accumulator.Tensors(tag):
ml = api_pb2.MetricLog(
time_stamp=rfc3339.rfc3339(
datetime.fromtimestamp(tensor.wall_time)
),
metric=api_pb2.Metric(
name=m, value=str(tf.make_ndarray(tensor.tensor_proto))
),
)
metric_logs.append(ml)
if _should_consider(tag, m, tfefile):
for tensor in event_accumulator.Tensors(tag):
ml = api_pb2.MetricLog(
time_stamp=rfc3339.rfc3339(
datetime.fromtimestamp(tensor.wall_time)
),
metric=api_pb2.Metric(
name=m, value=str(tf.make_ndarray(tensor.tensor_proto))
),
)
metric_logs.append(ml)
# support old-style tensorboard metrics too
for tag in tags[SCALARS]:
for m in self.metric_names:
if _should_consider(tag, m, tfefile):
for scalar in event_accumulator.Scalars(tag):
ml = api_pb2.MetricLog(
time_stamp=rfc3339.rfc3339(
datetime.fromtimestamp(scalar.wall_time)
),
metric=api_pb2.Metric(name=m, value=str(scalar.value)),
)
metric_logs.append(ml)

return metric_logs

Expand Down
52 changes: 42 additions & 10 deletions test/unit/v1beta1/metricscollector/test_tfevent_metricscollector.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,35 +13,67 @@
# limitations under the License.

import os
import tempfile
import unittest

import tensorboardX
import utils

METRIC_DIR_NAMES = ("train", "test")
METRIC_NAMES = ("accuracy", "loss")
QUALIFIED_METRIC_NAMES = tuple(
f"{dir}/{metric}"
for dir in METRIC_DIR_NAMES
for metric in METRIC_NAMES
)

class TestTFEventMetricsCollector(unittest.TestCase):
def test_parse_file(self):

current_dir = os.path.dirname(os.path.abspath(__file__))
logs_dir = os.path.join(current_dir, "testdata/tfevent-metricscollector/logs")

# Metric format is "{{dirname}}/{{metrics name}}"
metric_names = ["train/accuracy", "train/loss", "test/loss", "test/accuracy"]
metric_logs = utils.get_metric_logs(logs_dir, metric_names)

metric_logs = utils.get_metric_logs(logs_dir, QUALIFIED_METRIC_NAMES)
self.assertEqual(20, len(metric_logs))

for log in metric_logs:
actual = log["metric"]["name"]
self.assertIn(actual, metric_names)
self.assertIn(actual, QUALIFIED_METRIC_NAMES)

train_metric_logs = utils.get_metric_logs(
os.path.join(logs_dir, "train"), METRIC_NAMES)
self.assertEqual(10, len(train_metric_logs))

for log in train_metric_logs:
actual = log["metric"]["name"]
self.assertIn(actual, METRIC_NAMES)

def test_parse_file_with_tensorboardX(self):
logs_dir = tempfile.mkdtemp()
num_iters = 3

# Metric format is "{{metrics name}}"
metric_names = ["accuracy", "loss"]
metrics_file_dir = os.path.join(logs_dir, "train")
metric_logs = utils.get_metric_logs(metrics_file_dir, metric_names)
self.assertEqual(10, len(metric_logs))
for dir_name in METRIC_DIR_NAMES:
with tensorboardX.SummaryWriter(os.path.join(logs_dir, dir_name)) as writer:
for metric_name in METRIC_NAMES:
for iter in range(num_iters):
writer.add_scalar(metric_name, 0.1, iter)


metric_logs = utils.get_metric_logs(logs_dir, QUALIFIED_METRIC_NAMES)
self.assertEqual(num_iters * len(QUALIFIED_METRIC_NAMES), len(metric_logs))

for log in metric_logs:
actual = log["metric"]["name"]
self.assertIn(actual, metric_names)
self.assertIn(actual, QUALIFIED_METRIC_NAMES)

train_metric_logs = utils.get_metric_logs(
os.path.join(logs_dir, "train"), METRIC_NAMES)
self.assertEqual(num_iters * len(METRIC_NAMES), len(train_metric_logs))

for log in train_metric_logs:
actual = log["metric"]["name"]
self.assertIn(actual, METRIC_NAMES)


if __name__ == '__main__':
Expand Down
1 change: 1 addition & 0 deletions test/unit/v1beta1/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
grpcio-testing==1.64.1
pytest==7.2.0
tensorboardX==2.6.2.2
kubeflow-training[huggingface]==1.9.0
Loading