.
├─ README.md
├─ config.sh
├─ Estimator.sh
├─ InitData
| ├─ data
| | └─ TripFiles
| └─ src
| ├─ service_account.json
| ├─ unzip.sh
| └─ vlogger.py
├─ RefineData
| ├─ data
| | ├─ refine_file.csv
| | ├─ refine_overspeed.csv
| | └─ RefineFiles
| └─ src
| ├─ refine_classified.sh
| ├─ refine_pars.sh
| └─ refine_overspeed.py
├─ Overspeed
| ├─ data
| | ├─ db.csv
| | ├─ gps.csv
| | └─ overspeed.csv
| └─ src
| ├─ initial_data.py
| └─ overspeed.py
├─ Groundtruth
| ├─ data
| | ├─ dsi_score.csv
| | ├─ hca_score.csv
| | └─ kmeans_score.csv
| └─ src
| ├─ dsi.py
| ├─ hca.py
| └─ kmeans.py
└─ Regression
├─ data
| ├─ rf_estimate.csv
| └─ svm_estimate.csv
└─ src
├─ rf.py
└─ svm.py
Directory | Explanation |
---|---|
InitData | TripFiles Download and unzip |
RefineData | Classify the data using normalized values and create a refined refine_file.csv file |
Overspeed | Counts the number of overspeed by comparing the user's driving DB with the road information DB |
Groundtruth | Using clustering algorithms, we create groundtruth to be used in the driving score |
Regression | Groundtruth-based Driving Score Estimate is performed using regression algorithms |
Source code | Explanation | Data |
---|---|---|
README.md | ||
config.sh | Enables configurations and install at once | |
Estimator.sh | All programs can be executed | |
vlogger.py | Download TripFiles from Firebase | TripFiles |
unzip.sh | TripFiles: trip file unzip | unzip TripFiles |
service_account.json | Google Storage account file | |
refine_classified.sh | Classify TripFiles according to conditions | RefineFiles |
refine_pars.sh | Create as 1 usable file | refine_file.csv |
refine_overspeed.py | refine_file data + overspeed_file data | refine_overspeed.csv |
initial_data.py | Detects the overspeed of all trips inside Tripfiles and creates initial data | |
overspeed.py | Detects the overspeed of a one trip and adds data to overspeed.csv | overspeed.csv |
dsi.py | DSI code for making Groundtruth | dsi_score.csv |
hca.py | HCA code among Clustering Algorithms for making Groundtruth | hca_score.csv |
kmeans.py | kmeans code among Clustering Algorithms for making Groundtruth | kmeans_score.csv |
rf.py | Random Forest code among Regression Algorithms for Driving Score Estimate | rf_estimate.csv |
svm.py | Support Vector Machine code among Regression Algorithms for Driving Score Estimate | svm_estimate.csv |
Configuration and API Install code.
# sudo source config.sh
# ./Estimator.sh -h
or
# ./Estimator.sh -?
# ./Estimator.sh -p [Select]
InitData Mode
Ex)
# ./Estimator.sh -p ID
RefineData Mode
Ex)
# ./Estimator.sh -p RD -n [Distance,Count]
Overspeed Mode
Ex)
# ./Estimator.sh -p O
Merge Mode
Ex)
# ./Estimator.sh -p M
Groundtruth Mode
Ex)
# ./Estimator.sh -p G -n [Distance,Count] -g [Model] (dsi)-w [overspeed,accel,decel,stop,start]
Regression Mode
Ex)
# ./Estimator.sh -p R -g [Model] -r [Model]
Normalization
# ./Estimator.sh -n [Distance,Conunt]
Groundtruth Model
# ./Estimator.sh -g [Model]
When selecting DSI among the groundtruth models, the weight value must be entered.
The corresponding options are:
# ./Estimator.sh -g dsi -w [overspeed,accel,decel,stop,start]
Regression Model
# ./Estimator.sh -r [Model]
Dankook University
Kwanghee Lee
E-main - [email protected]
Sounghyoun Lee
E-mail - [email protected]