Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
lengyijun committed Oct 7, 2024
1 parent 72a7a5a commit dd67c22
Show file tree
Hide file tree
Showing 3 changed files with 23 additions and 0 deletions.
2 changes: 2 additions & 0 deletions GoldbachTm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,5 @@ import GoldbachTm.ListBlank
import GoldbachTm.Tm27.TuringMachine27
import GoldbachTm.Tm31.TuringMachine31
import GoldbachTm.Tm31.Hello
import GoldbachTm.Tm31.Content
import GoldbachTm.Tm31.Prime
21 changes: 21 additions & 0 deletions GoldbachTm/Tm31/Content.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
import GoldbachTm.Tm31.TuringMachine31
import Mathlib.Data.Nat.Prime.Defs

theorem lemma_25 (k : ℕ): ∀ (i : ℕ),
nth_cfg i = some ⟨⟨25, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate k Γ.one), Turing.ListBlank.mk []⟩⟩ →
(¬ (∃ x y, x + y = k /\ Nat.Prime x /\ Nat.Prime y)) →
∃ j, nth_cfg (i+j) = some ⟨⟨25, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (k+2) Γ.one), Turing.ListBlank.mk []⟩⟩
:= by
sorry

theorem halt_lemma :
(∃ (k x y: ℕ), k % 2 = 0 /\ x + y = k /\ Nat.Prime x /\ Nat.Prime y) →
∃ i, nth_cfg i = none
:= by
sorry

theorem halt_lemma_rev :
∃ i, nth_cfg i = none →
(∃ (k x y: ℕ), k % 2 = 0 /\ x + y = k /\ Nat.Prime x /\ Nat.Prime y)
:= by
sorry
Empty file added GoldbachTm/Tm31/Prime.lean
Empty file.

0 comments on commit dd67c22

Please sign in to comment.