Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tidy up to be easier for new contributor to get started #1

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
*#
0/
__pycache__/
mgga_openmc.slurm
population_0.json
27 changes: 24 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,25 @@
Readme
==========
Overview
========

This is a prototype for a Multiscale Grid Genetic Algorithm based on that of [this PhD thesis by Stephen Asbury](https://deepblue.lib.umich.edu/bitstream/handle/2027.42/91388/stasbury_1.pdf?sequence=1&isAllowed=y).

The idea is to optimise OpenMC geometries for given quanities of interest at increasing resolution.

Prerequisites
=============
- OpenMC: Please follow the installation instructions [here.](https://docs.openmc.org/en/stable/usersguide/install.html).

Usage
=====
```
python make_geom.py [-h] [--initialise] [--generate GENERATE] --input INPUT

required:
--input INPUT JSON file containing input settings

optional arguments:
-h, --help show this help message and exit
--initialise In this run mode, initialise the first generation population
--generate In this run mode, initialise the next generation population
```

This is a prototype for a Multiscale Grid Genetic Algorithm based on that of `https://deepblue.lib.umich.edu/bitstream/handle/2027.42/91388/stasbury_1.pdf?sequence=1&isAllowed=y` the idea is to allow OpenMC geometries to be optimised in various resolutions hence the multi grid,
2 changes: 1 addition & 1 deletion config.json
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,6 @@
"chromosome_length": 100,
"num_of_states": 6,
"percentage_worst": 0.25,
"tornament_size": 5
"tournament_size": 5
}
}
105 changes: 54 additions & 51 deletions make_geom.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
This script builds a simple geometry
This script builds a simple geometry
"""

import argparse
Expand All @@ -18,8 +18,8 @@ def add_element(element,material,fraction,fraction_type):

for nuclide in to_add:
material.add_nuclide(nuclide[0],nuclide[1],percent_type=nuclide[2])
class openmc_problem():

class OpenmcProblem():
def __init__(self):
self.materials = {}
self.model = None
Expand Down Expand Up @@ -102,16 +102,21 @@ def __build_tallies(self, flux_cells, tbr_cells):
self.model.tallies = tallies

# generate the fitness for the current generation and
# index
# index
def generate_fitness(self, directory, sp_name = "statepoint.10.h5"):
sp = openmc.StatePoint(directory + '/' + sp_name)
try:
sp = openmc.StatePoint(directory + '/' + sp_name)
except OSError:
print("Could not open file ",sp_name, " in directory ", directory)
sys.exit(1)

tbr = sp.get_tally(name = 'tbr')
cells = []
[cells.append(x.id) for x in self.cells]
tbr_data = tbr.get_slice(scores=['(n,t)'],filters=[openmc.CellFilter], filter_bins = [tuple(cells)])
tbr_ave = tbr_data.mean
# maximise tbr

# maximise tbr
fitness = sum(tbr_ave)[0][0]
sp.close()
return fitness
Expand All @@ -125,10 +130,10 @@ def assign_genome(self, genome):
self.cells[idx].fill = mat
idx = idx + 1

# given the genome build the region of geometry
# given the genome build the region of geometry
# to optimise
def build_geometry(self):

univ = openmc.Universe(name='optimisation')
cells = []
idx = 0
Expand Down Expand Up @@ -179,7 +184,7 @@ def __build_model(self):

# build the region to optimise
optimisation = self.build_geometry()

# Create a cell filled with the lattice
inside_boundary = -self.y_planes[-1] & +self.y_planes[0] & -self.x_planes[-1] & +self.x_planes[0]
outside_boundary = +self.y_planes[-1] | -self.y_planes[0] | +self.x_planes[-1] | -self.x_planes[0]
Expand All @@ -191,7 +196,7 @@ def __build_model(self):

self.x_planes[0].boundary_type = 'vacuum'
self.x_planes[-1].boundary_type = 'vacuum'

self.y_planes[0].boundary_type = 'vacuum'
self.y_planes[-1].boundary_type = 'vacuum'

Expand All @@ -206,7 +211,7 @@ def build_slurm(generation):
contents.append('#SBATCH -A UKAEA-AP001-CPU')
contents.append('#SBATCH -p cclake')
contents.append('#SBATCH --nodes=1')
contents.append('#SBATCH --ntasks=56')
contents.append('#SBATCH --ntasks=56')
contents.append('#SBATCH --time=36:00:00')
contents.append('#SBATCH --output=array_%A-%a.out')
contents.append('#SBATCH --array=1-1000')
Expand All @@ -224,8 +229,8 @@ def build_slurm(generation):
contents.append('cd ..')

with open('mgga_openmc.slurm','w') as f:
f.writelines(s + '\n' for s in contents)
f.writelines(s + '\n' for s in contents)

def write_population(population, generation):
data = {"population": [population]}
json_string = json.dumps(data)
Expand All @@ -241,47 +246,42 @@ def read_population(generation):
data = json.loads(jsonContent)
return data["population"][0]

if __name__ == '__main__':

def main():
# Set up command-line arguments for generating/running the model
parser = argparse.ArgumentParser()
parser.add_argument('--generate')
parser.add_argument('--run', action='store_true')
parser.add_argument('--initialise', action='store_true')
parser.add_argument('--input')
#parser.add_argument('--run', action='store_true')
parser.add_argument('--initialise', help="In this run mode, initialise the first generation population", action='store_true')
parser.add_argument('--generate', help="In this run mode, initialise the next generation population", action='store_true')
parser.add_argument('--input', help="JSON file containing input settings", required=True)

args = parser.parse_args()

try:
with open(args.input) as f:
data = json.load(f)
f.close()
except FileNotFoundError:
print("Could not find file",args.input)
sys.exit(1)

# MGGA class
mgga = MGGA()

if args.input:
f = open(args.input)
data = json.load(f)
mgga.seed = data["mgga_settings"]["seed"]
mgga.population_size = data["mgga_settings"]["population"]
mgga.generations = data["mgga_settings"]["generations"]
mgga.crossover_prob = data["mgga_settings"]["crossover_prob"]
mgga.mutation_prob = data["mgga_settings"]["mutation_prob"]
mgga.copy_prob = data["mgga_settings"]["copy_prob"]
mgga.chromosome_length = data["mgga_settings"]["chromosome_length"]
mgga.num_genes = data["mgga_settings"]["num_of_states"]
mgga.percentage_worst = data["mgga_settings"]["percentage_worst"]
mgga.tornament_size = data["mgga_settings"]["tornament_size"]
mgga.initialise()
f.close()
else:
print('No input specified, use --input')
sys.exit()
mgga = MGGA(data["mgga_settings"])

# initialise the first generation
if args.initialise:
# Generate generic population set
mgga.fill_population()
openmc_problem = openmc_problem()

# For each member of population make an openmc model
openmc_problem = OpenmcProblem()
openmc_problem.setup(10,[0,100],10,[0,200])
for idx,i in enumerate(mgga.population):
openmc_problem.assign_genome(i)
openmc_problem.model.export_to_xml(directory='0/'+str(idx))
build_slurm(0)
write_population(mgga.population, 0)

generation_id=0
for index, genome in enumerate(mgga.population):
openmc_problem.assign_genome(genome)
openmc_problem.model.export_to_xml(directory=str(generation_id)+'/'+str(index))
build_slurm(generation_id)
write_population(mgga.population, generation_id)

# need to write a filename dependent population file!!

Expand All @@ -291,7 +291,7 @@ def read_population(generation):
population = read_population(generation-1)
mgga.population = population
genomes = mgga.population
openmc_problem = openmc_problem()
openmc_problem = OpenmcProblem()
openmc_problem.setup(10,[0,100],10,[0,200])
# loop over each of the genomes
fitness = []
Expand All @@ -306,13 +306,16 @@ def read_population(generation):
print('min fitness: ' + str(min(fitness)))

mgga.sample_population()
for idx,i in enumerate(mgga.children):
openmc_problem.assign_genome(i)
for idx, genome in enumerate(mgga.children):
openmc_problem.assign_genome(genome)
openmc_problem.model.export_to_xml(directory=str(generation) + '/'+str(idx))
write_population(mgga.children,generation)

"""
# translate to a higher resolution
if args.translate:
genomes = mgga.population
"""
"""

if __name__ == '__main__':
main()
40 changes: 23 additions & 17 deletions mgga.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,18 +5,28 @@
import copy

class MGGA():
def __init__(self, seed = 1283123901319):
self.population_size = 0
self.generations = 0
self.num_genes = 0
self.chromosome_length = 0
self.copy_prob = 0.0
self.crossover_prob = 0.0
self.mutation_prob = 0.0
def __init__(self, settings, seed = 1283123901319):

# Override default seed if it is in settings
if "seed" in settings.keys():
seed = settings["seed"]
self.seed = seed
random.seed(self.seed)

# Settings
self.population_size = settings["population"]
self.generations = settings["generations"]
self.num_genes = settings["num_of_states"]
self.chromosome_length = settings["chromosome_length"]
self.copy_prob = settings["copy_prob"]
self.crossover_prob = settings["crossover_prob"]
self.mutation_prob = settings["mutation_prob"]
self.percentage_worst = settings["percentage_worst"]
self.tourament_size = settings["tournament_size"]

self.population = []
self.children = []
self.fitness = []
self.seed = seed
self.count = {}
self.count["mutate"] = 0
self.count["crossover"] = 0
Expand All @@ -35,10 +45,6 @@ def __summary(self):
print("clone happened: %f (%f%%)" % (self.count["clone"], per_clone))
print("mutate happened: %f (%f%%)" % (self.count["mutate"], per_mutate))

def initialise(self):
if self.seed != 0:
random.seed(self.seed)

# purely random mutation
def __mutate(self, chromosome):
selected_gene = random.randint(0,self.chromosome_length-1)
Expand All @@ -57,14 +63,14 @@ def __uniform_crossover(self,chromosome1):

for i in range(self.chromosome_length):
select_parent = random.randint(0,1)

if select_parent == 0:
child1[i] = chromosome1[i]
child2[i] = chromosome2[i]
else:
child1[i] = chromosome2[i]
child2[i] = chromosome1[i]

return [child1,child2]

# copy the chromosome
Expand All @@ -76,7 +82,7 @@ def __random(self):
for i in range(self.chromosome_length):
chromosome[i] = random.randint(0,self.num_genes-1)
return chromosome

def __sample(self,chromosome):
rand = random.random()
if rand <= self.copy_prob:
Expand Down Expand Up @@ -123,4 +129,4 @@ def sample_population(self):
else:
self.children.append(child)

self.__summary()
self.__summary()