A powerful AI tool that helps companies discover innovative AI use cases for their existing products
- 🤖 AI-Powered Use Cases: Generate innovative AI implementation ideas for existing products
- 📊 Market Research: Analyze potential applications in your industry
- 🔍 Dataset Discovery: Find relevant datasets via Kaggle API integration
- 🌐 Company Analysis: Automatic information retrieval via web scraping
- 📝 Use Case Documentation: Well-structured AI implementation suggestions
- 🐍 Python
- 🧠 Cohere API (AI use case generation)
- 📊 Streamlit (UI)
- 📁 Kaggle API (dataset discovery)
- 🔍 BeautifulSoup4 (web scraping)
# Clone the repository
git clone https://github.com/manojkp08/NexAI_Research.git
cd NexAI_Research
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.example .env
# Edit .env with your API keysBefore running the tool, update the following in your .env file:
COHERE_API_KEY=your_cohere_api_key
KAGGLE_USERNAME=your_kaggle_username
KAGGLE_KEY=your_kaggle_key
# Start the Streamlit interface
streamlit run app.py- Input Company Information: Enter your company name and product details
- AI Analysis: The system analyzes your product through Cohere API
- Use Case Generation: Creates innovative AI implementation scenarios
- Dataset Discovery: Finds relevant datasets through Kaggle API
- Implementation Plan: Generates a structured plan for each use case
NEXAI_RESEARCH/
├── __pycache__/
├── market_research_env/
├── .env
├── .gitignore
├── app.py
├── database.py
├── dataset_finder.py
├── docker-compose.yml
├── Dockerfile.streamlit
├── requirements.txt
├── research_agent.py
└── use_case_generator.py
- app.py: Main Streamlit application interface
- research_agent.py: Core AI research orchestration
- use_case_generator.py: AI use case generation logic
- dataset_finder.py: Kaggle dataset discovery module
- database.py: Data storage and retrieval
- Predictive Maintenance: AI monitoring of equipment to predict failures
- Customer Segmentation: Advanced clustering for targeted marketing
- Natural Language Interfaces: Voice or text interfaces for products
- Computer Vision Integration: Visual recognition capabilities
- Recommendation Systems: Personalized suggestion engines
⭐ Star this repository if you find it useful! ⭐
Made with ❤️ by Manoj



