Skip to content

UCSD Optimized Results on system MI210 #83

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
| Model | Scenario | Accuracy | Throughput | Latency (in ms) |
|---------------------|------------|----------------------|--------------|-------------------|
| stable-diffusion-xl | offline | (15.22477, 84.24318) | 0.848 | - |
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops).

*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.*

## Host platform

* OS version: Linux-5.14.0-427.42.1.el9_4.x86_64-x86_64-with-glibc2.35
* CPU version: x86_64
* Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0]
* MLCommons CM version: 3.4.1

## CM Run Command

See [CM installation guide](https://docs.mlcommons.org/inference/install/).

```bash
pip install -U cmind

cm rm cache -f

cm pull repo mlcommons@cm4mlops --checkout=b32ded2a4c3039ad16dadc734bee03dd1a97f228

cm run script \
--tags=run-mlperf,inference,_r4.1-dev,_scc24-main \
--model=sdxl \
--framework=pytorch \
--category=datacenter \
--scenario=Offline \
--execution_mode=test \
--device=rocm \
--quiet \
--precision=float16 \
--adr.mlperf-implementation.tags=_branch.multinode-test,_repo.https://github.com/zixianwang2022/mlperf-scc24 \
--adr.mlperf-implementation.version=custom \
--env.CM_GET_PLATFORM_DETAILS=no \
--target_qps=1.8
```
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts),
you should simply reload mlcommons@cm4mlops without checkout and clean CM cache as follows:*

```bash
cm rm repo mlcommons@cm4mlops
cm pull repo mlcommons@cm4mlops
cm rm cache -f

```

## Results

Platform: aqua-reference-rocm-pytorch-v2.6.0.dev20241118-scc24-main

Model Precision: fp32

### Accuracy Results
`CLIP_SCORE`: `15.22477`, Required accuracy for closed division `>= 31.68632` and `<= 31.81332`
`FID_SCORE`: `84.24318`, Required accuracy for closed division `>= 23.01086` and `<= 23.95008`

### Performance Results
`Samples per second`: `0.847525`
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
INFO:main:Namespace(sut_server=['http://10.0.0.14:8008', 'http://10.0.0.12:8008'], dataset='coco-1024', dataset_path='/root/CM/repos/local/cache/61dd835801c542a3/install', profile='stable-diffusion-xl-pytorch', scenario='Offline', max_batchsize=1, threads=1, accuracy=True, find_peak_performance=False, backend='pytorch', model_name='stable-diffusion-xl', output='/root/CM/repos/local/cache/d549713c4a534705/test_results/aqua-reference-rocm-pytorch-v2.6.0.dev20241118-scc24-main/stable-diffusion-xl/offline/accuracy', qps=None, model_path='/root/CM/repos/local/cache/c4b6bbbebe504f28/stable_diffusion_fp16', dtype='fp16', device='cuda', latent_framework='torch', mlperf_conf='mlperf.conf', user_conf='/root/CM/repos/mlcommons@cm4mlops/script/generate-mlperf-inference-user-conf/tmp/6626c9658bff4d2291e3121038a4cfca.conf', audit_conf='audit.config', ids_path='/root/CM/repos/local/cache/61dd835801c542a3/install/sample_ids.txt', time=None, count=10, debug=False, performance_sample_count=5000, max_latency=None, samples_per_query=8)
WARNING:backend-pytorch:Model path not provided, running with default hugging face weights
This may not be valid for official submissions
Keyword arguments {'safety_checker': None} are not expected by StableDiffusionXLPipeline and will be ignored.
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]Using the `SDPA` attention implementation on multi-gpu setup with ROCM may lead to performance issues due to the FA backend. Disabling it to use alternative backends.
Loading pipeline components...: 57%|█████▋ | 4/7 [00:00<00:00, 12.44it/s]Loading pipeline components...: 86%|████████▌ | 6/7 [00:00<00:00, 7.56it/s]Loading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 9.15it/s]
RETURNED from requests.post on predict at time 1731969667.0400865
BEFORE lg.QuerySamplesComplete(response)
AFTER lg.QuerySamplesComplete(response)
RETURNED from requests.post on predict at time 1731969689.698808
BEFORE lg.QuerySamplesComplete(response)
AFTER lg.QuerySamplesComplete(response)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"starting_weights_filename": "https://github.com/mlcommons/inference/tree/master/text_to_image#download-model",
"retraining": "no",
"input_data_types": "fp32",
"weight_data_types": "fp32",
"weight_transformations": "no"
}
Loading