- If use GPU,
export GPU_ENABLE=1
- script/docker/setup.sh
- Install VNC viewer
- script/docker/start.sh
- docker exec -it demoimageclassification_main bash
- Open VNC viewer with address 0.0.0.0:5900 to see camera
- Run
python train_model.py
- options:
- --dataset: path to input dataset, default: dataset
- --model: training model (letnet or minivggnet), default: minivggnet
- --output: path to output model, default: output/minivggnet.h5
- --reset: value: 1 - capture images then train, value: 0 - train with current dataset
- options:
- Capture pictures:
- Press SPACE to capture pictures for current class (in camera window)
- Press SHIFT to move to next class (in camera window)
- Press ENTER to start training (in camera window)
- Press Esc to quit (in camera window)
- Tips:
- Take at least 100 images per class
- With images number per class less than 1000, I prefer model lenet
- With images number per class less than 1000, I prefer model minivggnet
- Run
python test_model.py
- options:
- --dataset: path to input dataset, default: dataset
- --model: training model (letnet or minivggnet), default: minivggnet
- options:
- Point camera to object
- Dected Image window will show object with highest match score
- Press Esc to quit (in camera window)