|
| 1 | +""" The idea is visualise one of the batches |
| 2 | +
|
| 3 | +This is a bit of a work in progress, but the idea is to visualise the batch in a markdown file. |
| 4 | +""" |
| 5 | + |
| 6 | +import os |
| 7 | + |
| 8 | +import pandas as pd |
| 9 | +import plotly.graph_objects as go |
| 10 | +import torch |
| 11 | + |
| 12 | +from ocf_datapipes.batch import BatchKey, NumpyBatch, NWPBatchKey |
| 13 | + |
| 14 | + |
| 15 | +def visualise_batch(batch: NumpyBatch, folder=".", output_file="report.md", limit_examples=None): |
| 16 | + """Visualize the batch in a markdown file""" |
| 17 | + |
| 18 | + # create dir if it does not exist |
| 19 | + for d in [folder, f"{folder}/gsp", f"{folder}/nwp", f"{folder}/satellite"]: |
| 20 | + if not os.path.exists(d): |
| 21 | + os.makedirs(d) |
| 22 | + |
| 23 | + with open(f"{folder}/{output_file}", "a") as f: |
| 24 | + # Wind |
| 25 | + print("# Batch visualisation", file=f) |
| 26 | + |
| 27 | + print("## Wind \n", file=f) |
| 28 | + keys = [ |
| 29 | + BatchKey.wind, |
| 30 | + BatchKey.wind_t0_idx, |
| 31 | + BatchKey.wind_time_utc, |
| 32 | + BatchKey.wind_id, |
| 33 | + BatchKey.wind_observed_capacity_mwp, |
| 34 | + BatchKey.wind_nominal_capacity_mwp, |
| 35 | + BatchKey.wind_time_utc, |
| 36 | + BatchKey.wind_latitude, |
| 37 | + BatchKey.wind_longitude, |
| 38 | + BatchKey.wind_solar_azimuth, |
| 39 | + BatchKey.wind_solar_elevation, |
| 40 | + ] |
| 41 | + for key in keys: |
| 42 | + if key in batch.keys(): |
| 43 | + print("\n", file=f) |
| 44 | + value = batch[key] |
| 45 | + if isinstance(value, torch.Tensor): |
| 46 | + print(f"{key} {value.shape=}", file=f) |
| 47 | + print(f"Max {value.max()}", file=f) |
| 48 | + print(f"Min {value.min()}", file=f) |
| 49 | + elif isinstance(value, int): |
| 50 | + print(f"{key} {value}", file=f) |
| 51 | + else: |
| 52 | + print(f"{key} {value}", file=f) |
| 53 | + |
| 54 | + print("## GSP \n", file=f) |
| 55 | + keys = [ |
| 56 | + BatchKey.gsp, |
| 57 | + BatchKey.gsp_id, |
| 58 | + BatchKey.gsp_time_utc, |
| 59 | + BatchKey.gsp_time_utc_fourier, |
| 60 | + BatchKey.gsp_x_osgb, |
| 61 | + BatchKey.gsp_x_osgb_fourier, |
| 62 | + BatchKey.gsp_y_osgb, |
| 63 | + BatchKey.gsp_y_osgb_fourier, |
| 64 | + BatchKey.gsp_t0_idx, |
| 65 | + BatchKey.gsp_effective_capacity_mwp, |
| 66 | + BatchKey.gsp_nominal_capacity_mwp, |
| 67 | + BatchKey.gsp_solar_azimuth, |
| 68 | + BatchKey.gsp_solar_elevation, |
| 69 | + ] |
| 70 | + for key in keys: |
| 71 | + if key in batch.keys(): |
| 72 | + print("\n", file=f) |
| 73 | + print(f"### {key.name}", file=f) |
| 74 | + value = batch[key] |
| 75 | + if key.name == "gsp": |
| 76 | + # plot gsp data |
| 77 | + n_examples = value.shape[0] |
| 78 | + if limit_examples is not None: |
| 79 | + n_examples = min(n_examples, limit_examples) |
| 80 | + |
| 81 | + for b in range(n_examples): |
| 82 | + fig = go.Figure() |
| 83 | + gsp_data = value[b, :, 0] |
| 84 | + time = pd.to_datetime(batch[BatchKey.gsp_time_utc][b], unit="s") |
| 85 | + fig.add_trace(go.Scatter(x=time, y=gsp_data, mode="lines", name="GSP")) |
| 86 | + fig.update_layout( |
| 87 | + title=f"GSP - example {b}", xaxis_title="Time", yaxis_title="Value" |
| 88 | + ) |
| 89 | + # fig.show(renderer='browser') |
| 90 | + name = f"gsp/gsp_{b}.png" |
| 91 | + fig.write_image(f"{folder}/{name}") |
| 92 | + print(f"", file=f) |
| 93 | + print("\n", file=f) |
| 94 | + |
| 95 | + elif isinstance(value, torch.Tensor): |
| 96 | + print(f"shape {value.shape=}", file=f) |
| 97 | + print(f"Max {value.max():.2f}", file=f) |
| 98 | + print(f"Min {value.min():.2f}", file=f) |
| 99 | + elif isinstance(value, int): |
| 100 | + print(f"{value}", file=f) |
| 101 | + else: |
| 102 | + print(f"{value}", file=f) |
| 103 | + |
| 104 | + # TODO plot solar azimuth and elevation |
| 105 | + |
| 106 | + # NWP |
| 107 | + print("## NWP \n", file=f) |
| 108 | + |
| 109 | + keys = [ |
| 110 | + NWPBatchKey.nwp, |
| 111 | + NWPBatchKey.nwp_target_time_utc, |
| 112 | + NWPBatchKey.nwp_channel_names, |
| 113 | + NWPBatchKey.nwp_step, |
| 114 | + NWPBatchKey.nwp_t0_idx, |
| 115 | + NWPBatchKey.nwp_init_time_utc, |
| 116 | + ] |
| 117 | + |
| 118 | + nwp = batch[BatchKey.nwp] |
| 119 | + |
| 120 | + nwp_providers = nwp.keys() |
| 121 | + for provider in nwp_providers: |
| 122 | + print("\n", file=f) |
| 123 | + print(f"### Provider {provider}", file=f) |
| 124 | + nwp_provider = nwp[provider] |
| 125 | + |
| 126 | + # plot nwp main data |
| 127 | + nwp_data = nwp_provider[NWPBatchKey.nwp] |
| 128 | + # average of lat and lon |
| 129 | + nwp_data = nwp_data.mean(dim=(3, 4)) |
| 130 | + |
| 131 | + n_examples = nwp_data.shape[0] |
| 132 | + if limit_examples is not None: |
| 133 | + n_examples = min(n_examples, limit_examples) |
| 134 | + |
| 135 | + for b in range(n_examples): |
| 136 | + |
| 137 | + fig = go.Figure() |
| 138 | + for i in range(len(nwp_provider[NWPBatchKey.nwp_channel_names])): |
| 139 | + channel = nwp_provider[NWPBatchKey.nwp_channel_names][i] |
| 140 | + nwp_data_one_channel = nwp_data[b, :, i] |
| 141 | + time = nwp_provider[NWPBatchKey.nwp_target_time_utc][b] |
| 142 | + time = pd.to_datetime(time, unit="s") |
| 143 | + fig.add_trace( |
| 144 | + go.Scatter(x=time, y=nwp_data_one_channel, mode="lines", name=channel) |
| 145 | + ) |
| 146 | + |
| 147 | + fig.update_layout( |
| 148 | + title=f"{provider} NWP - example {b}", xaxis_title="Time", yaxis_title="Value" |
| 149 | + ) |
| 150 | + # fig.show(renderer='browser') |
| 151 | + name = f"nwp/{provider}_nwp_{b}.png" |
| 152 | + fig.write_image(f"{folder}/{name}") |
| 153 | + print(f"", file=f) |
| 154 | + print("\n", file=f) |
| 155 | + |
| 156 | + for key in keys: |
| 157 | + print("\n", file=f) |
| 158 | + print(f"#### {key.name}", file=f) |
| 159 | + value = nwp_provider[key] |
| 160 | + |
| 161 | + if "time" in key.name: |
| 162 | + |
| 163 | + # make a table with example, shape, max, min |
| 164 | + print("| Example | Shape | Max | Min |", file=f) |
| 165 | + print("| --- | --- | --- | --- |", file=f) |
| 166 | + |
| 167 | + for example_id in range(n_examples): |
| 168 | + value_ts = pd.to_datetime(value[example_id], unit="s") |
| 169 | + print( |
| 170 | + f"| {example_id} | {len(value_ts)} " |
| 171 | + f"| {value_ts.max()} | {value_ts.min()} |", |
| 172 | + file=f, |
| 173 | + ) |
| 174 | + |
| 175 | + elif "channel" in key.name: |
| 176 | + |
| 177 | + # create a table with the channel names with max, min, mean and std |
| 178 | + print("| Channel | Max | Min | Mean | Std |", file=f) |
| 179 | + print("| --- | --- | --- | --- | --- |", file=f) |
| 180 | + for i in range(len(value)): |
| 181 | + channel = value[i] |
| 182 | + data = nwp_data[:, :, i] |
| 183 | + print( |
| 184 | + f"| {channel} " |
| 185 | + f"| {data.max().item():.2f} " |
| 186 | + f"| {data.min().item():.2f} " |
| 187 | + f"| {data.mean().item():.2f} " |
| 188 | + f"| {data.std().item():.2f} |", |
| 189 | + file=f, |
| 190 | + ) |
| 191 | + |
| 192 | + print(f"Shape={value.shape}", file=f) |
| 193 | + |
| 194 | + elif isinstance(value, torch.Tensor): |
| 195 | + print(f"Shape {value.shape=}", file=f) |
| 196 | + print(f"Max {value.max():.2f}", file=f) |
| 197 | + print(f"Min {value.min():.2f}", file=f) |
| 198 | + elif isinstance(value, int): |
| 199 | + print(f"{value}", file=f) |
| 200 | + else: |
| 201 | + print(f"{value}", file=f) |
| 202 | + |
| 203 | + # Satellite |
| 204 | + print("## Satellite \n", file=f) |
| 205 | + keys = [ |
| 206 | + BatchKey.satellite_actual, |
| 207 | + BatchKey.satellite_t0_idx, |
| 208 | + BatchKey.satellite_time_utc, |
| 209 | + BatchKey.satellite_time_utc, |
| 210 | + BatchKey.satellite_x_geostationary, |
| 211 | + BatchKey.satellite_y_geostationary, |
| 212 | + ] |
| 213 | + |
| 214 | + for key in keys: |
| 215 | + |
| 216 | + print("\n", file=f) |
| 217 | + print(f"#### {key.name}", file=f) |
| 218 | + value = batch[key] |
| 219 | + |
| 220 | + if "satellite_actual" in key.name: |
| 221 | + |
| 222 | + print(value.shape, file=f) |
| 223 | + |
| 224 | + # average of lat and lon |
| 225 | + value = value.mean(dim=(3, 4)) |
| 226 | + |
| 227 | + n_examples = value.shape[0] |
| 228 | + if limit_examples is not None: |
| 229 | + n_examples = min(n_examples, limit_examples) |
| 230 | + |
| 231 | + for b in range(n_examples): |
| 232 | + |
| 233 | + fig = go.Figure() |
| 234 | + for i in range(value.shape[2]): |
| 235 | + satellite_data_one_channel = value[b, :, i] |
| 236 | + time = batch[BatchKey.satellite_time_utc][b] |
| 237 | + time = pd.to_datetime(time, unit="s") |
| 238 | + fig.add_trace( |
| 239 | + go.Scatter(x=time, y=satellite_data_one_channel, mode="lines") |
| 240 | + ) |
| 241 | + |
| 242 | + fig.update_layout( |
| 243 | + title=f"Satellite - example {b}", xaxis_title="Time", yaxis_title="Value" |
| 244 | + ) |
| 245 | + # fig.show(renderer='browser') |
| 246 | + name = f"satellite/satellite_{b}.png" |
| 247 | + fig.write_image(f"{folder}/{name}") |
| 248 | + print(f"", file=f) |
| 249 | + print("\n", file=f) |
| 250 | + |
| 251 | + elif "time" in key.name: |
| 252 | + |
| 253 | + # make a table with example, shape, max, min |
| 254 | + print("| Example | Shape | Max | Min |", file=f) |
| 255 | + print("| --- | --- | --- | --- |", file=f) |
| 256 | + |
| 257 | + for example_id in range(n_examples): |
| 258 | + value_ts = pd.to_datetime(value[example_id], unit="s") |
| 259 | + print( |
| 260 | + f"| {example_id} | {len(value_ts)} " |
| 261 | + f"| {value_ts.max()} | {value_ts.min()} |", |
| 262 | + file=f, |
| 263 | + ) |
| 264 | + |
| 265 | + elif "channel" in key.name: |
| 266 | + |
| 267 | + # create a table with the channel names with max, min, mean and std |
| 268 | + print("| Channel | Max | Min | Mean | Std |", file=f) |
| 269 | + print("| --- | --- | --- | --- | --- |", file=f) |
| 270 | + for i in range(len(value)): |
| 271 | + channel = value[i] |
| 272 | + data = nwp_data[:, :, i] |
| 273 | + print( |
| 274 | + f"| {channel} " |
| 275 | + f"| {data.max().item():.2f} " |
| 276 | + f"| {data.min().item():.2f} " |
| 277 | + f"| {data.mean().item():.2f} " |
| 278 | + f"| {data.std().item():.2f} |", |
| 279 | + file=f, |
| 280 | + ) |
| 281 | + |
| 282 | + print(f"Shape={value.shape}", file=f) |
| 283 | + |
| 284 | + elif isinstance(value, torch.Tensor): |
| 285 | + print(f"Shape {value.shape=}", file=f) |
| 286 | + print(f"Max {value.max():.2f}", file=f) |
| 287 | + print(f"Min {value.min():.2f}", file=f) |
| 288 | + elif isinstance(value, int): |
| 289 | + print(f"{value}", file=f) |
| 290 | + else: |
| 291 | + print(f"{value}", file=f) |
| 292 | + |
| 293 | + |
| 294 | +# For example you can run it like this |
| 295 | +# with open("batch.md", "w") as f: |
| 296 | +# sys.stdout = f |
| 297 | +# d = torch.load("000000.pt") |
| 298 | +# visualise_batch(d) |
0 commit comments