-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_model.py
340 lines (279 loc) · 14.1 KB
/
create_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import joblib
import os
import tensorflow as tf
import tensorflow as tf
from tensorflow.keras.layers import Dense,GlobalAveragePooling2D, Input, Embedding, LSTM,Dot,Reshape,Concatenate,BatchNormalization, GlobalMaxPooling2D, Dropout, Add, MaxPooling2D, GRU, AveragePooling2D
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pandas as pd
import numpy as np
import cv2
from nltk.translate.bleu_score import sentence_bleu
chexnet_weights = "chexnet_weights/brucechou1983_CheXNet_Keras_0.3.0_weights.h5"
def create_chexnet(chexnet_weights = chexnet_weights,input_size=(224,224)):
"""
chexnet_weights: weights value in .h5 format of chexnet
creates a chexnet model with preloaded weights present in chexnet_weights file
"""
model = tf.keras.applications.DenseNet121(include_top=False,input_shape = input_size+(3,)) #importing densenet the last layer will be a relu activation layer
#we need to load the weights so setting the architecture of the model as same as the one of the chexnet
x = model.output #output from chexnet
x = GlobalAveragePooling2D()(x)
x = Dense(14, activation="sigmoid", name="chexnet_output")(x) #here activation is sigmoid as seen in research paper
chexnet = tf.keras.Model(inputs = model.input,outputs = x)
chexnet.load_weights(chexnet_weights)
chexnet = tf.keras.Model(inputs = model.input,outputs = chexnet.layers[-3].output) #we will be taking the 3rd last layer (here it is layer before global avgpooling)
#since we are using attention here
return chexnet
class Image_encoder(tf.keras.layers.Layer):
"""
This layer will output image backbone features after passing it through chexnet
"""
def __init__(self,
name = "image_encoder_block"
):
super().__init__()
self.chexnet = create_chexnet(input_size = (224,224))
self.chexnet.trainable = False
self.avgpool = AveragePooling2D()
# for i in range(10): #the last 10 layers of chexnet will be trained
# self.chexnet.layers[-i].trainable = True
def call(self,data):
op = self.chexnet(data) #op shape: (None,7,7,1024)
op = self.avgpool(op) #op shape (None,3,3,1024)
op = tf.reshape(op,shape = (-1,op.shape[1]*op.shape[2],op.shape[3])) #op shape: (None,9,1024)
return op
def encoder(image1,image2,dense_dim,dropout_rate):
"""
Takes image1,image2
gets the final encoded vector of these
"""
#image1
im_encoder = Image_encoder()
bkfeat1 = im_encoder(image1) #shape: (None,9,1024)
bk_dense = Dense(dense_dim,name = 'bkdense',activation = 'relu') #shape: (None,9,512)
bkfeat1 = bk_dense(bkfeat1)
#image2
bkfeat2 = im_encoder(image2) #shape: (None,9,1024)
bkfeat2 = bk_dense(bkfeat2) #shape: (None,9,512)
#combining image1 and image2
concat = Concatenate(axis=1)([bkfeat1,bkfeat2]) #concatenating through the second axis shape: (None,18,1024)
bn = BatchNormalization(name = "encoder_batch_norm")(concat)
dropout = Dropout(dropout_rate,name = "encoder_dropout")(bn)
return dropout
class global_attention(tf.keras.layers.Layer):
"""
calculate global attention
"""
def __init__(self,dense_dim):
super().__init__()
# Intialize variables needed for Concat score function here
self.W1 = Dense(units = dense_dim) #weight matrix of shape enc_units*dense_dim
self.W2 = Dense(units = dense_dim) #weight matrix of shape dec_units*dense_dim
self.V = Dense(units = 1) #weight matrix of shape dense_dim*1
#op (None,98,1)
def call(self,encoder_output,decoder_h): #here the encoded output will be the concatted image bk features shape: (None,98,dense_dim)
decoder_h = tf.expand_dims(decoder_h,axis=1) #shape: (None,1,dense_dim)
tanh_input = self.W1(encoder_output) + self.W2(decoder_h) #ouput_shape: batch_size*98*dense_dim
tanh_output = tf.nn.tanh(tanh_input)
attention_weights = tf.nn.softmax(self.V(tanh_output),axis=1) #shape= batch_size*98*1 getting attention alphas
op = attention_weights*encoder_output#op_shape: batch_size*98*dense_dim multiply all aplhas with corresponding context vector
context_vector = tf.reduce_sum(op,axis=1) #summing all context vector over the time period ie input length, output_shape: batch_size*dense_dim
return context_vector,attention_weights
class One_Step_Decoder(tf.keras.layers.Layer):
"""
decodes a single token
"""
def __init__(self,vocab_size, embedding_dim, max_pad, dense_dim ,name = "onestepdecoder"):
# Initialize decoder embedding layer, LSTM and any other objects needed
super().__init__()
self.dense_dim = dense_dim
self.embedding = Embedding(input_dim = vocab_size+1,
output_dim = embedding_dim,
input_length=max_pad,
mask_zero=True,
name = 'onestepdecoder_embedding'
)
self.LSTM = GRU(units=self.dense_dim,
# return_sequences=True,
return_state=True,
name = 'onestepdecoder_LSTM'
)
self.attention = global_attention(dense_dim = dense_dim)
self.concat = Concatenate(axis=-1)
self.dense = Dense(dense_dim,name = 'onestepdecoder_embedding_dense',activation = 'relu')
self.final = Dense(vocab_size+1,activation='softmax')
self.concat = Concatenate(axis=-1)
self.add =Add()
@tf.function
def call(self,input_to_decoder, encoder_output, decoder_h):#,decoder_c):
'''
One step decoder mechanisim step by step:
A. Pass the input_to_decoder to the embedding layer and then get the output(batch_size,1,embedding_dim)
B. Using the encoder_output and decoder hidden state, compute the context vector.
C. Concat the context vector with the step A output
D. Pass the Step-C output to LSTM/GRU and get the decoder output and states(hidden and cell state)
E. Pass the decoder output to dense layer(vocab size) and store the result into output.
F. Return the states from step D, output from Step E, attention weights from Step -B
here state_h,state_c are decoder states
'''
embedding_op = self.embedding(input_to_decoder) #output shape = batch_size*1*embedding_shape (only 1 token)
context_vector,attention_weights = self.attention(encoder_output,decoder_h) #passing hidden state h of decoder and encoder output
#context_vector shape: batch_size*dense_dim we need to add time dimension
context_vector_time_axis = tf.expand_dims(context_vector,axis=1)
#now we will combine attention output context vector with next word input to the lstm here we will be teacher forcing
concat_input = self.concat([context_vector_time_axis,embedding_op])#output dimension = batch_size*input_length(here it is 1)*(dense_dim+embedding_dim)
output,decoder_h = self.LSTM(concat_input,initial_state = decoder_h)
#output shape = batch*1*dense_dim and decoder_h,decoder_c has shape = batch*dense_dim
#we need to remove the time axis from this decoder_output
output = self.final(output)#shape = batch_size*decoder vocab size
return output,decoder_h,attention_weights
class decoder(tf.keras.Model):
"""
Decodes the encoder output and caption
"""
def __init__(self,max_pad, embedding_dim,dense_dim,batch_size ,vocab_size):
super().__init__()
self.onestepdecoder = One_Step_Decoder(vocab_size = vocab_size, embedding_dim = embedding_dim, max_pad = max_pad, dense_dim = dense_dim)
self.output_array = tf.TensorArray(tf.float32,size=max_pad)
self.max_pad = max_pad
self.batch_size = batch_size
self.dense_dim =dense_dim
@tf.function
def call(self,encoder_output,caption):#,decoder_h,decoder_c): #caption : (None,max_pad), encoder_output: (None,dense_dim)
decoder_h, decoder_c = tf.zeros_like(encoder_output[:,0]), tf.zeros_like(encoder_output[:,0]) #decoder_h, decoder_c
output_array = tf.TensorArray(tf.float32,size=self.max_pad)
for timestep in range(self.max_pad): #iterating through all timesteps ie through max_pad
output,decoder_h,attention_weights = self.onestepdecoder(caption[:,timestep:timestep+1], encoder_output, decoder_h)
output_array = output_array.write(timestep,output) #timestep*batch_size*vocab_size
self.output_array = tf.transpose(output_array.stack(),[1,0,2]) #.stack :Return the values in the TensorArray as a stacked Tensor.)
#shape output_array: (batch_size,max_pad,vocab_size)
return self.output_array
def create_model():
"""
creates the best model ie the attention model
and returns the model after loading the weights
and also the tokenizer
"""
#hyperparameters
input_size = (224,224)
tokenizer = joblib.load('tokenizer.pkl')
max_pad = 29
batch_size = 100
vocab_size = len(tokenizer.word_index)
embedding_dim = 300
dense_dim = 512
lstm_units = dense_dim
dropout_rate = 0.2
tf.keras.backend.clear_session()
image1 = Input(shape = (input_size + (3,))) #shape = 224,224,3
image2 = Input(shape = (input_size + (3,))) #https://www.w3resource.com/python-exercises/tuple/python-tuple-exercise-5.php
caption = Input(shape = (max_pad,))
encoder_output = encoder(image1,image2,dense_dim,dropout_rate) #shape: (None,28,512)
output = decoder(max_pad, embedding_dim,dense_dim,batch_size ,vocab_size)(encoder_output,caption)
model = tf.keras.Model(inputs = [image1,image2,caption], outputs = output)
model_filename = 'Encoder_Decoder_global_attention.h5'
model_save = model_filename
model.load_weights(model_save)
return model,tokenizer
def greedy_search_predict(image1,image2,model,tokenizer,input_size = (224,224)):
"""
Given paths to two x-ray images predicts the impression part of the x-ray in a greedy search algorithm
"""
image1 = tf.expand_dims(cv2.resize(image1,input_size,interpolation = cv2.INTER_NEAREST),axis=0) #introduce batch and resize
image2 = tf.expand_dims(cv2.resize(image2,input_size,interpolation = cv2.INTER_NEAREST),axis=0)
image1 = model.get_layer('image_encoder')(image1)
image2 = model.get_layer('image_encoder')(image2)
image1 = model.get_layer('bkdense')(image1)
image2 = model.get_layer('bkdense')(image2)
concat = model.get_layer('concatenate')([image1,image2])
enc_op = model.get_layer('encoder_batch_norm')(concat)
enc_op = model.get_layer('encoder_dropout')(enc_op) #this is the output from encoder
decoder_h,decoder_c = tf.zeros_like(enc_op[:,0]),tf.zeros_like(enc_op[:,0])
a = []
pred = []
max_pad = 29
for i in range(max_pad):
if i==0: #if first word
caption = np.array(tokenizer.texts_to_sequences(['<cls>'])) #shape: (1,1)
output,decoder_h,attention_weights = model.get_layer('decoder').onestepdecoder(caption,enc_op,decoder_h)#,decoder_c) decoder_c,
#prediction
max_prob = tf.argmax(output,axis=-1) #tf.Tensor of shape = (1,1)
caption = np.array([max_prob]) #will be sent to onstepdecoder for next iteration
if max_prob==np.squeeze(tokenizer.texts_to_sequences(['<end>'])):
break;
else:
a.append(tf.squeeze(max_prob).numpy())
return tokenizer.sequences_to_texts([a])[0] #here output would be 1,1 so subscripting to open the array
def get_bleu(reference,prediction):
"""
Given a reference and prediction string, outputs the 1-gram,2-gram,3-gram and 4-gram bleu scores
"""
reference = [reference.split()] #should be in an array (cos of multiple references can be there here only 1)
prediction = prediction.split()
bleu1 = sentence_bleu(reference,prediction,weights = (1,0,0,0))
bleu2 = sentence_bleu(reference,prediction,weights = (0.5,0.5,0,0))
bleu3 = sentence_bleu(reference,prediction,weights = (0.33,0.33,0.33,0))
bleu4 = sentence_bleu(reference,prediction,weights = (0.25,0.25,0.25,0.25))
return bleu1,bleu2,bleu3,bleu4
def predict1(image1,image2=None,model_tokenizer = None):
"""given image1 and image 2 filepaths returns the predicted caption,
the model_tokenizer will contain stored model_weights and tokenizer
"""
if image2 is None: #if only 1 image file is given
image2 = image1
# try:
# image1 = cv2.imread(image1,cv2.IMREAD_UNCHANGED)/255
# image2 = cv2.imread(image2,cv2.IMREAD_UNCHANGED)/255
# except:
# return print("Must be an image")
if model_tokenizer == None:
model,tokenizer = create_model()
else:
model,tokenizer = model_tokenizer[0],model_tokenizer[1]
predicted_caption = greedy_search_predict(image1,image2,model,tokenizer)
return predicted_caption
def predict2(true_caption, image1,image2=None,model_tokenizer = None):
"""given image1 and image 2 filepaths and the true_caption
returns the mean of cumulative ngram bleu scores where n=1,2,3,4,
the model_tokenizer will contain stored model_weights and tokenizer
"""
if image2 == None: #if only 1 image file is given
image2 = image1
try:
image1 = cv2.imread(image1,cv2.IMREAD_UNCHANGED)/255
image2 = cv2.imread(image2,cv2.IMREAD_UNCHANGED)/255
except:
return print("Must be an image")
if model_tokenizer == None:
model,tokenizer = create_model()
else:
model,tokenizer = model_tokenizer[0],model_tokenizer[1]
predicted_caption = greedy_search_predict(image1,image2,model,tokenizer)
_ = get_bleu(true_caption,predicted_caption)
_ = list(_)
return pd.DataFrame([_],columns = ['bleu1','bleu2','bleu3','bleu4'])
def function1(image1,image2,model_tokenizer = None):
"""
here image1 and image2 will be a list of image
filepaths and outputs the resulting captions as a list
"""
if model_tokenizer is None:
model_tokenizer = list(create_model())
predicted_caption = []
for i1,i2 in zip(image1,image2):
caption = predict1(i1,i2,model_tokenizer)
predicted_caption.append(caption)
return predicted_caption
def function2(true_caption,image1,image2):
"""
here true_caption,image1 and image2 will be a list of true_captions and image
filepaths and outputs the resulting bleu_scores
as a dataframe
"""
model_tokenizer = list(create_model())
predicted = pd.DataFrame(columns = ['bleu1','bleu2','bleu3','bleu4'])
for c,i1,i2 in zip(true_caption,image1,image2):
caption = predict2(c,i1,i2,model_tokenizer)
predicted = predicted.append(caption,ignore_index = True)
return predicted