Skip to content

Commit

Permalink
add CAIC and EDF calcs
Browse files Browse the repository at this point in the history
  • Loading branch information
James-Thorson committed Nov 28, 2024
1 parent b146eb3 commit e356b24
Show file tree
Hide file tree
Showing 4 changed files with 182 additions and 0 deletions.
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ S3method(terms,sdmTMB)
S3method(tidy,sdmTMB)
S3method(vcov,sdmTMB)
export(Beta)
export(CAIC.sdmTMB)
export(add_barrier_mesh)
export(add_utm_columns)
export(censored_poisson)
Expand Down
110 changes: 110 additions & 0 deletions R/caic.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@

#' @title Calculate conditional AIC
#'
#' @description
#' Calculates the conditional Akaike Information criterion (cAIC).
#'
#' @param object Output from \code{\link{sdmTMB}}
#' @param what Whether to return the cAIC or the effective degrees of freedom
#' (EDF) for each group of random effects.
#'
#' @details
#' cAIC is designed to optimize the expected out-of-sample predictive
#' performance for new data that share the same random effects as the
#' in-sample (fitted) data, e.g., spatial interpolation. In this sense,
#' it should be a fast approximation to optimizing the model structure
#' based on k-fold crossvalidation.
#' By contrast, \code{AIC} calculates the
#' marginal Akaike Information Criterion, which is designed to optimize
#' expected predictive performance for new data that have new random effects,
#' e.g., extrapolation, or inference about generative parameters.
#'
#' cAIC also calculates as a byproduct the effective degrees of freedom,
#' i.e., the number of fixed effects that would have an equivalent impact on
#' model flexibility as a given random effect.
#'
#' Both cAIC and EDF are calculated using Eq. 6 of Zheng Cadigan Thorson 2024.
#'
#' Note that, for models that include profiled fixed effects, these profiles
#' are turned off.
#'
#' @return
#' Either the cAIC, or the effective degrees of freedom (EDF) by group
#' of random effects
#'
#' @references
#'
#' **Deriving the general approximation to cAIC used here**
#'
#' Zheng, N., Cadigan, N., & Thorson, J. T. (2024).
#' A note on numerical evaluation of conditional Akaike information for
#' nonlinear mixed-effects models (arXiv:2411.14185). arXiv.
#' \doi{10.48550/arXiv.2411.14185}
#'
#' **The utility of EDF to diagnose hierarchical model behavior**
#'
#' Thorson, J. T. (2024). Measuring complexity for hierarchical
#' models using effective degrees of freedom. Ecology,
#' 105(7), e4327 \doi{10.1002/ecy.4327}
#'
#' @export
CAIC.sdmTMB <-
function( object,
what = c("CAIC","EDF") ){

what = match.arg(what)
require(Matrix)
tmb_data = object$tmb_data

# Make sure profile = NULL
if( is.null(object$control$profile) ){
obj = object$tmb_obj
}else{
obj = TMB::MakeADFun( data = tmb_data,
parameters = object$parlist,
map = object$tmb_map,
random = object$tmb_random,
DLL = "sdmTMB",
profile = NULL )
}

# Make obj_new
tmb_data$weights_i[] = 0
obj_new = TMB::MakeADFun( data = tmb_data,
parameters = object$parlist,
map = object$tmb_map,
random = object$tmb_random,
DLL = "sdmTMB",
profile = NULL )

#
par = obj$env$parList()
parDataMode <- obj$env$last.par
indx = obj$env$lrandom()
q = length(indx)
p = length(object$model$par)

## use - for Hess because model returns negative loglikelihood;
#cov_Psi_inv = -Hess_new[indx,indx]; ## this is the marginal prec mat of REs;
Hess_new = -Matrix(obj_new$env$f(parDataMode,order=1,type="ADGrad"),sparse = TRUE)
Hess_new = Hess_new[indx,indx]

## Joint hessian etc
Hess = -Matrix(obj$env$f(parDataMode,order=1,type="ADGrad"),sparse = TRUE)
Hess = Hess[indx,indx]
negEDF = diag(solve(Hess, Hess_new))

if(what=="CAIC"){
jnll = obj$env$f(parDataMode)
cnll = jnll - obj_new$env$f(parDataMode)
cAIC = 2*cnll + 2*(p+q) - 2*sum(negEDF)
return(cAIC)
}
if(what=="EDF"){
# Figure out group for each random-effect coefficient
group = factor(names(object$last.par.best[obj$env$random]))
# Calculate total EDF by group
EDF = tapply(negEDF,INDEX=group,FUN=length) - tapply(negEDF,INDEX=group,FUN=sum)
return(EDF)
}
}
55 changes: 55 additions & 0 deletions man/CAIC.sdmTMB.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

16 changes: 16 additions & 0 deletions scratch/caic-demo.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@

library(sdmTMB)

# Build a mesh to implement the SPDE approach:
mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 20)

# Fit a Tweedie spatial random field GLMM with a smoother for depth:
fit <- sdmTMB(
density ~ s(depth),
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log"),
control = sdmTMBcontrol(profile="b_j")
)

CAIC.sdmTMB(fit, what="CAIC")
CAIC.sdmTMB(fit, what="EDF")

0 comments on commit e356b24

Please sign in to comment.