Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Disconnected demo #403

Merged
merged 7 commits into from
Nov 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions demo-notebooks/guided-demos/2_basic_jobs.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,13 @@
"id": "83d77b74",
"metadata": {},
"source": [
"First, let's begin by submitting to Ray, training a basic NN on the MNIST dataset:"
"First, let's begin by submitting to Ray, training a basic NN on the MNIST dataset:\n",
"\n",
"NOTE: To test this demo in an air-gapped/ disconnected environment alter the training script to use a local dataset.\n",
"First we must download the MNIST dataset. We've included a helper script to do this for you. \n",
"\n",
"You can run the python script (`python download_mnist_datasets.py`) directly and then place the dataset in the same directory as this notebook. \n",
"The path to the dataset would be: `..guided-demos/MNIST/raw/` "
]
},
{
Expand All @@ -129,6 +135,7 @@
"jobdef = DDPJobDefinition(\n",
" name=\"mnisttest\",\n",
" script=\"mnist.py\",\n",
" # script=\"mnist_disconnected.py\", # training script for disconnected environment\n",
" scheduler_args={\"requirements\": \"requirements.txt\"}\n",
")\n",
"job = jobdef.submit(cluster)"
Expand Down Expand Up @@ -203,7 +210,9 @@
"id": "31096641",
"metadata": {},
"source": [
"Now, an alternative option for job submission is to submit directly to MCAD, which will schedule pods to run the job with requested resources:"
"Now, an alternative option for job submission is to submit directly to MCAD, which will schedule pods to run the job with requested resources:\n",
"\n",
"NOTE: To test this demo in an air-gapped/ disconnected environment alter the training script to use a local dataset."
]
},
{
Expand All @@ -216,6 +225,7 @@
"jobdef = DDPJobDefinition(\n",
" name=\"mnistjob\",\n",
" script=\"mnist.py\",\n",
" # script=\"mnist_disconnected.py\", # training script for disconnected environment\n",
" scheduler_args={\"namespace\": \"default\"},\n",
" j=\"1x1\",\n",
" gpu=0,\n",
Expand Down Expand Up @@ -299,7 +309,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.9.18"
},
"vscode": {
"interpreter": {
Expand Down
46 changes: 46 additions & 0 deletions demo-notebooks/guided-demos/download_mnist_datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Copyright 2022 IBM, Red Hat
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from torchvision.datasets import MNIST
from torchvision import transforms


def download_mnist_dataset(destination_dir):
# Ensure the destination directory exists
if not os.path.exists(destination_dir):
os.makedirs(destination_dir)

# Define transformations
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)

# Download the training data
train_set = MNIST(
root=destination_dir, train=True, download=True, transform=transform
)

# Download the test data
test_set = MNIST(
root=destination_dir, train=False, download=True, transform=transform
)

print(f"MNIST dataset downloaded in {destination_dir}")


# Specify the directory where you
destination_dir = os.path.dirname(os.path.abspath(__file__))

download_mnist_dataset(destination_dir)
164 changes: 164 additions & 0 deletions demo-notebooks/guided-demos/mnist_disconnected.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# Copyright 2022 IBM, Red Hat
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# In[]
import os

import torch
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from torchmetrics import Accuracy
from torchvision import transforms
from torchvision.datasets import MNIST

PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
BATCH_SIZE = 256 if torch.cuda.is_available() else 64
# %%

local_minst_path = os.path.dirname(os.path.abspath(__file__))

print("prior to running the trainer")
print("MASTER_ADDR: is ", os.getenv("MASTER_ADDR"))
print("MASTER_PORT: is ", os.getenv("MASTER_PORT"))


class LitMNIST(LightningModule):
def __init__(self, data_dir=PATH_DATASETS, hidden_size=64, learning_rate=2e-4):
super().__init__()

# Set our init args as class attributes
self.data_dir = data_dir
self.hidden_size = hidden_size
self.learning_rate = learning_rate

# Hardcode some dataset specific attributes
self.num_classes = 10
self.dims = (1, 28, 28)
channels, width, height = self.dims
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]
)

# Define PyTorch model
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear(channels * width * height, hidden_size),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size, self.num_classes),
)

self.val_accuracy = Accuracy()
self.test_accuracy = Accuracy()

def forward(self, x):
x = self.model(x)
return F.log_softmax(x, dim=1)

def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return loss

def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
self.val_accuracy.update(preds, y)

# Calling self.log will surface up scalars for you in TensorBoard
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", self.val_accuracy, prog_bar=True)

def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
self.test_accuracy.update(preds, y)

# Calling self.log will surface up scalars for you in TensorBoard
self.log("test_loss", loss, prog_bar=True)
self.log("test_acc", self.test_accuracy, prog_bar=True)

def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
return optimizer

####################
# DATA RELATED HOOKS
####################

def prepare_data(self):
# download
print("Preparing MNIST dataset...")
MNIST(self.data_dir, train=True, download=False)
MNIST(self.data_dir, train=False, download=False)

def setup(self, stage=None):
# Assign train/val datasets for use in dataloaders
if stage == "fit" or stage is None:
mnist_full = MNIST(
self.data_dir, train=True, transform=self.transform, download=False
)
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])

# Assign test dataset for use in dataloader(s)
if stage == "test" or stage is None:
self.mnist_test = MNIST(
self.data_dir, train=False, transform=self.transform, download=False
)

def train_dataloader(self):
return DataLoader(self.mnist_train, batch_size=BATCH_SIZE)

def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=BATCH_SIZE)

def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=BATCH_SIZE)


# Init DataLoader from MNIST Dataset

model = LitMNIST(data_dir=local_minst_path)

print("GROUP: ", int(os.environ.get("GROUP_WORLD_SIZE", 1)))
print("LOCAL: ", int(os.environ.get("LOCAL_WORLD_SIZE", 1)))

# Initialize a trainer
trainer = Trainer(
accelerator="auto",
# devices=1 if torch.cuda.is_available() else None, # limiting got iPython runs
max_epochs=5,
callbacks=[TQDMProgressBar(refresh_rate=20)],
num_nodes=int(os.environ.get("GROUP_WORLD_SIZE", 1)),
devices=int(os.environ.get("LOCAL_WORLD_SIZE", 1)),
strategy="ddp",
)

# Train the model ⚡
trainer.fit(model)