Skip to content

More models #2020

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: gh/jainapurva/25/head
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions benchmarks/microbenchmarks/test/benchmark_config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,31 @@ model_params:
# device: "cpu"
# model_type: "linear"
# enable_profiler: true # Enable profiling for this model

- name: "bf16_rms_norm_linear_activation"
matrix_shapes:
- name: "custom"
shapes: [
[2048, 4096, 1024],
]
high_precision_dtype: "torch.bfloat16"
use_torch_compile: true
torch_compile_mode: "max-autotune"
device: "cuda"
model_type: "rms_norm_linear_activation"
enable_profiler: true
enable_memory_profile: true

- name: "bf16_transformer_block"
matrix_shapes:
- name: "custom"
shapes: [
[2048, 4096, 1024], # For transformer_block, k is the hidden dimension
]
high_precision_dtype: "torch.bfloat16"
use_torch_compile: true
torch_compile_mode: "max-autotune"
device: "cuda"
model_type: "transformer_block"
enable_profiler: true
enable_memory_profile: true
115 changes: 115 additions & 0 deletions benchmarks/microbenchmarks/test/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,11 @@
Float8DynamicActivationFloat8SemiSparseWeightConfig,
Int4WeightOnlyConfig,
LNLinearSigmoid,
RMSNorm,
RMSNormLinearActivation,
SemiSparseWeightConfig,
ToyLinearModel,
TransformerBlock,
clean_caches,
create_model_and_input,
generate_results_csv,
Expand Down Expand Up @@ -162,6 +165,61 @@ def test_ln_linear_sigmoid(self):
torch.all((out >= 0) & (out <= 1))
) # Check sigmoid output range

def test_rms_norm(self):
# Test RMSNorm
rms_norm = RMSNorm(dim=64)
x = torch.randn(16, 64)
out = rms_norm(x)
self.assertEqual(out.shape, (16, 64))

# Test with different eps
rms_norm = RMSNorm(dim=64, eps=1e-5)
out = rms_norm(x)
self.assertEqual(out.shape, (16, 64))

def test_rms_norm_linear_activation(self):
# Test with default GELU activation
model = RMSNormLinearActivation(fc_dim1=64, fc_dim2=32, dtype=torch.float32)
x = torch.randn(16, 64)
out = model(x)
self.assertEqual(out.shape, (16, 32))
self.assertEqual(out.dtype, torch.float32)

# Test with ReLU activation
model = RMSNormLinearActivation(fc_dim1=64, fc_dim2=32, dtype=torch.float32, activation="relu")
out = model(x)
self.assertEqual(out.shape, (16, 32))
self.assertTrue(torch.all(out >= 0)) # Check ReLU output range

# Test with SiLU activation
model = RMSNormLinearActivation(fc_dim1=64, fc_dim2=32, dtype=torch.float32, activation="silu")
out = model(x)
self.assertEqual(out.shape, (16, 32))

# Test with invalid activation
with self.assertRaises(ValueError):
RMSNormLinearActivation(fc_dim1=64, fc_dim2=32, dtype=torch.float32, activation="invalid")

def test_transformer_block(self):
# Test with default parameters
model = TransformerBlock(hidden_dim=64, num_heads=8, mlp_ratio=4, dtype=torch.float32)
x = torch.randn(16, 16, 64) # [batch_size, seq_len, hidden_dim]
out = model(x)
self.assertEqual(out.shape, (16, 16, 64))
self.assertEqual(out.dtype, torch.float32)

# Test with different parameters
model = TransformerBlock(hidden_dim=128, num_heads=4, mlp_ratio=2, dtype=torch.float32)
x = torch.randn(8, 32, 128)
out = model(x)
self.assertEqual(out.shape, (8, 32, 128))

# Test with different head dimensions
model = TransformerBlock(hidden_dim=96, num_heads=6, mlp_ratio=3, dtype=torch.float32)
x = torch.randn(4, 8, 96)
out = model(x)
self.assertEqual(out.shape, (4, 8, 96))

def test_create_model_and_input(self):
m, k, n = 16, 64, 32
model, input_data = create_model_and_input(
Expand All @@ -186,6 +244,63 @@ def test_create_model_and_input(self):
self.assertIsInstance(model, LNLinearSigmoid)
self.assertEqual(input_data.shape, (m, k))

# Test RMSNormLinearActivation
model, input_data = create_model_and_input(
model_type="rms_norm_linear_activation",
m=m,
k=k,
n=n,
high_precision_dtype=torch.float32,
device="cpu",
)
self.assertIsInstance(model, RMSNormLinearActivation)
self.assertEqual(input_data.shape, (m, k))

# Test TransformerBlock
model, input_data = create_model_and_input(
model_type="transformer_block",
m=m,
k=k,
n=n, # n is not used for transformer_block
high_precision_dtype=torch.float32,
device="cpu",
)
self.assertIsInstance(model, TransformerBlock)
self.assertEqual(input_data.shape, (m, 16, k)) # [batch_size, seq_len, hidden_dim]

def test_quantization_on_models(self):
# Test quantization on RMSNormLinearActivation
model = RMSNormLinearActivation(fc_dim1=64, fc_dim2=32, dtype=torch.float32)
x = torch.randn(16, 64)

# Test with Int8WeightOnlyConfig
config = string_to_config(quantization="int8wo", sparsity=None)
if config is not None:
# Skip quantization test if torchao.quantization.quantize is not available
try:
from torchao.quantization import quantize
quantized_model = quantize(model, config)
out = quantized_model(x)
self.assertEqual(out.shape, (16, 32))
except ImportError:
print("Skipping quantization test: torchao.quantization.quantize not available")

# Test quantization on TransformerBlock
model = TransformerBlock(hidden_dim=64, num_heads=8, mlp_ratio=4, dtype=torch.float32)
x = torch.randn(16, 16, 64)

# Test with Int8WeightOnlyConfig
config = string_to_config(quantization="int8wo", sparsity=None)
if config is not None:
# Skip quantization test if torchao.quantization.quantize is not available
try:
from torchao.quantization import quantize
quantized_model = quantize(model, config)
out = quantized_model(x)
self.assertEqual(out.shape, (16, 16, 64))
except ImportError:
print("Skipping quantization test: torchao.quantization.quantize not available")

def test_generate_results_csv(self):
results = [
BenchmarkResult(
Expand Down
110 changes: 110 additions & 0 deletions benchmarks/microbenchmarks/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -383,6 +383,108 @@ def forward(self, x):
return x


class RMSNorm(torch.nn.Module):
def __init__(self, dim, eps=1e-6, dtype=torch.bfloat16):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))

def forward(self, x):
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * norm * self.weight


class RMSNormLinearActivation(torch.nn.Module):
def __init__(self, fc_dim1, fc_dim2, dtype=torch.bfloat16, activation="gelu"):
super().__init__()
self.rms_norm = RMSNorm(fc_dim1, dtype=dtype)
self.fc = torch.nn.Linear(fc_dim1, fc_dim2, bias=False).to(dtype)

if activation == "gelu":
self.activation = torch.nn.GELU()
elif activation == "relu":
self.activation = torch.nn.ReLU()
elif activation == "silu":
self.activation = torch.nn.SiLU()
else:
raise ValueError(f"Unsupported activation: {activation}")

def forward(self, x):
x = self.rms_norm(x)
x = self.fc(x)
x = self.activation(x)
return x


class TransformerBlock(torch.nn.Module):
def __init__(self, hidden_dim, num_heads=8, mlp_ratio=4, dtype=torch.bfloat16):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.head_dim = hidden_dim // num_heads

# Self-attention
self.qkv = torch.nn.Linear(hidden_dim, 3 * hidden_dim, bias=False).to(dtype)
self.proj = torch.nn.Linear(hidden_dim, hidden_dim, bias=False).to(dtype)

# MLP
self.mlp_ratio = mlp_ratio
self.mlp_hidden_dim = int(hidden_dim * mlp_ratio)
self.mlp_fc1 = torch.nn.Linear(hidden_dim, self.mlp_hidden_dim, bias=False).to(dtype)
self.mlp_fc2 = torch.nn.Linear(self.mlp_hidden_dim, hidden_dim, bias=False).to(dtype)

# Layer norms
self.norm1 = RMSNorm(hidden_dim, dtype=dtype)
self.norm2 = RMSNorm(hidden_dim, dtype=dtype)

# Activation
self.activation = torch.nn.GELU()

def forward(self, x):
batch_size, seq_len, _ = x.shape

# Self-attention
residual = x
x = self.norm1(x)

# Reshape qkv projection for better memory layout
qkv = self.qkv(x) # [batch_size, seq_len, 3 * hidden_dim]
qkv = qkv.reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim)
qkv = qkv.permute(2, 0, 3, 1, 4) # [3, batch_size, num_heads, seq_len, head_dim]
q, k, v = qkv # Each has shape [batch_size, num_heads, seq_len, head_dim]

# Scaled dot-product attention with proper reshaping
# Reshape for better memory layout and avoid broadcasting issues
q = q.reshape(batch_size * self.num_heads, seq_len, self.head_dim)
k = k.reshape(batch_size * self.num_heads, seq_len, self.head_dim)
v = v.reshape(batch_size * self.num_heads, seq_len, self.head_dim)

# Compute attention scores
attn = (q @ k.transpose(-2, -1)) * (1.0 / (self.head_dim ** 0.5))
attn = torch.softmax(attn, dim=-1)

# Apply attention to values
x = attn @ v # [batch_size * num_heads, seq_len, head_dim]

# Reshape back to original dimensions
x = x.reshape(batch_size, self.num_heads, seq_len, self.head_dim)
x = x.transpose(1, 2).reshape(batch_size, seq_len, self.hidden_dim)

# Project back to hidden dimension
x = self.proj(x)
x = residual + x

# MLP
residual = x
x = self.norm2(x)
x = self.mlp_fc1(x)
x = self.activation(x)
x = self.mlp_fc2(x)
x = residual + x

return x


def string_to_config(
quantization: Optional[str], sparsity: Optional[str], **kwargs
) -> AOBaseConfig:
Expand Down Expand Up @@ -576,6 +678,14 @@ def create_model_and_input(
elif model_type == "ln_linear_sigmoid":
model = LNLinearSigmoid(k, n, high_precision_dtype).to(device)
input_data = torch.randn(m, k, device=device, dtype=high_precision_dtype)
elif model_type == "rms_norm_linear_activation":
model = RMSNormLinearActivation(k, n, high_precision_dtype).to(device)
input_data = torch.randn(m, k, device=device, dtype=high_precision_dtype)
elif model_type == "transformer_block":
# For transformer block, k is the hidden dimension
model = TransformerBlock(k, num_heads=8, mlp_ratio=4, dtype=high_precision_dtype).to(device)
# Input shape for transformer is [batch_size, seq_len, hidden_dim]
input_data = torch.randn(m, 16, k, device=device, dtype=high_precision_dtype)
else:
raise ValueError(f"Unknown model type: {model_type}")
return model, input_data
Expand Down
Loading