Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add attention export functionality to experiments #134

Merged
merged 2 commits into from
Mar 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions experiments/attention_export.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
import numpy as np
import onnx
import onnxruntime
from optimum.exporters.onnx import main_export
from transformers import AutoTokenizer

model_id = "sentence-transformers/paraphrase-MiniLM-L6-v2"
output_dir = f"models/{model_id.replace('/', '_')}"
model_kwargs = {"output_attentions": True, "return_dict": True}
tokenizer = AutoTokenizer.from_pretrained(model_id)

# export if the output model does not exist
# try:
# sess = onnxruntime.InferenceSession(f"{output_dir}/model.onnx")
# print("Model already exported")
# except FileNotFoundError:
print(f"Exporting model to {output_dir}")
main_export(model_id, output=output_dir, no_post_process=True, model_kwargs=model_kwargs)
30 changes: 30 additions & 0 deletions experiments/try_attention_export.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import numpy as np
import onnx
import onnxruntime
from optimum.exporters.onnx import main_export
from transformers import AutoTokenizer

model_id = "sentence-transformers/paraphrase-MiniLM-L6-v2"
output_dir = f"models/{model_id.replace('/', '_')}"
model_kwargs = {"output_attentions": True, "return_dict": True}
tokenizer = AutoTokenizer.from_pretrained(model_id)

model_path = f"{output_dir}/model.onnx"
onnx_model = onnx.load(model_path)
ort_session = onnxruntime.InferenceSession(model_path)
text = "This is a test sentence"
tokenizer_output = tokenizer(text, return_tensors="np")
input_ids = tokenizer_output["input_ids"]
attention_mask = tokenizer_output["attention_mask"]
print(attention_mask)
# Prepare the input
input_ids = np.array(input_ids).astype(np.int64) # Replace your_input_ids with actual input data

# Run the ONNX model
outputs = ort_session.run(None, {"input_ids": input_ids, "attention_mask": attention_mask})

# Get the attention weights
attentions = outputs[-1]

# Print the attention weights for the first layer and first head
print(attentions[0][0])
Loading