A high-performance RAG (Retrieval-Augmented Generation) application for document chat, built with state-of-the-art components.
- SambaNova: Lightning-fast inference engine for Llama 3.3
- Llama Index: RAG orchestration framework
- Qdrant: Vector database for efficient embedding storage
- Streamlit: User interface framework
- Python 3.11 or later
- Docker (for Qdrant)
- SambaNova API key
-
Configure SambaNova
Get your API key from SambaNova and create a
.env
file:SAMBANOVA_API_KEY=<YOUR_SAMBANOVA_API_KEY>
-
Launch Qdrant VectorDB
docker run -p 6333:6333 -p 6334:6334 \ -v $(pwd)/qdrant_storage:/qdrant/storage:z \ qdrant/qdrant
-
Install Dependencies
pip install streamlit llama-index-vector-stores-qdrant llama-index-llms-sambanovasystems sseclient-py
-
Launch Application
streamlit run app.py
- Start the application using the command above
- Upload your documents through the Streamlit interface
- Begin chatting with your documents using natural language queries
We welcome contributions! Please:
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to your branch
- Create a Pull Request
This project is licensed under the MIT License.