Skip to content

Latest commit

 

History

History

078 - Subsets

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

78. Subsets share

Problem Statement

Given an integer array nums of unique elements, return all possible subsets (the power set).

The solution set must not contain duplicate subsets. Return the solution in any order.

 

Example 1:

Input: nums = [1,2,3]
Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

Example 2:

Input: nums = [0]
Output: [[],[0]]

 

Constraints:

  • 1 <= nums.length <= 10
  • -10 <= nums[i] <= 10
  • All the numbers of nums are unique.

Solutions

package main

func subsets(nums []int) [][]int {
	res := make([][]int, 0)
	curr_subset := make([]int, 0)

	var backtrack func(i int)

	backtrack = func(i int) {
		println(i)
		if i >= len(nums) {
			curr_dup := make([]int, len(curr_subset))
			copy(curr_dup, curr_subset)
			res = append(res, curr_dup)
			return
		}

		// include the current element
		curr_subset = append(curr_subset, nums[i])
		backtrack(i + 1)

		// exclude the current element
		curr_subset = curr_subset[:len(curr_subset)-1] // pop the last element
		backtrack(i + 1)
	}

	backtrack(0)

	return res
}
class Solution:
    def subsets(self, nums: list[int]) -> list[list[int]]:
        res, curr = [], []

        def backtrack(i: int) -> None:
            if i >= len(nums):
                print(curr.copy())
                res.append(curr.copy())
                return

            # include the current element
            curr.append(nums[i])
            backtrack(i + 1)

            # exclude the current element
            curr.pop()
            backtrack(i + 1)

        backtrack(0)

        return res