Given an integer array nums
of unique elements, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,3]
Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
Example 2:
Input: nums = [0]
Output: [[],[0]]
Constraints:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
- All the numbers of
nums
are unique.
package main
func subsets(nums []int) [][]int {
res := make([][]int, 0)
curr_subset := make([]int, 0)
var backtrack func(i int)
backtrack = func(i int) {
println(i)
if i >= len(nums) {
curr_dup := make([]int, len(curr_subset))
copy(curr_dup, curr_subset)
res = append(res, curr_dup)
return
}
// include the current element
curr_subset = append(curr_subset, nums[i])
backtrack(i + 1)
// exclude the current element
curr_subset = curr_subset[:len(curr_subset)-1] // pop the last element
backtrack(i + 1)
}
backtrack(0)
return res
}
class Solution:
def subsets(self, nums: list[int]) -> list[list[int]]:
res, curr = [], []
def backtrack(i: int) -> None:
if i >= len(nums):
print(curr.copy())
res.append(curr.copy())
return
# include the current element
curr.append(nums[i])
backtrack(i + 1)
# exclude the current element
curr.pop()
backtrack(i + 1)
backtrack(0)
return res