-
Notifications
You must be signed in to change notification settings - Fork 0
ramanrewati/ANPR
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
import cv2 from ultralytics import YOLO # Load the YOLOv8 model model = YOLO('/runs/detect/train5/weights/best.pt') # Open the video file video_path = "/Users/rewatiramansingh/Downloads/Mumbai Highway Running car view | HD Footage | No Copyright.mp4" cap = cv2.VideoCapture(video_path) # Get the frame rate and size of the video fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Define the output video writer fourcc = cv2.VideoWriter_fourcc(*'mp4v') output_path = 'output.mp4' out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) # Loop through the video frames while cap.isOpened(): # Read a frame from the video success, frame = cap.read() if success: # Run YOLOv8 inference on the frame results = model(frame) # Visualize the results on the frame annotated_frame = results[0].plot() # Write the annotated frame to the output video out.write(annotated_frame) # Display the annotated frame cv2.imshow("YOLOv8 Inference", annotated_frame) # Break the loop if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord("q"): break else: # Break the loop if the end of the video is reached break # Release the video capture object and close the display window cap.release() cv2.destroyAllWindows() # Release the output video writer out.release() # Play the output video cap = cv2.VideoCapture(output_path) while cap.isOpened(): success, frame = cap.read() if success: cv2.imshow('Output Video', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break else: break cv2.destroyAllWindows()
About
No description, website, or topics provided.
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published