This model will be used for Car color detection(i.e blue,red,beige and so on) The libraries required to run this model is present in the requirements.txt file
User Manual
To run this model download the conda environment in the machine and then run the following command after changing the directory to yolov5-master:
1 # if the camera is attached in some other port
img.jpg # image
vid.mp4 # video
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream``` C:\Users\USER\Desktop\car-color detection\yolov5-master>python detect.py --source blue_car.jpg --weights best.pt detect: weights=['best.pt'], source=blue_car.jpg, data=data\coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs\detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1 C:\Users\USER\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\cuda\__init__.py:83: UserWarning: CUDA initialization: CUDA driver initialization failed, you might not have a CUDA gpu. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\c10\cuda\CUDAFunctions.cpp:109.) return torch._C._cuda_getDeviceCount() > 0 YOLOv5 2022-9-6 Python-3.9.13 torch-1.12.1+cu113 CPU Fusing layers... Model summary: 224 layers, 7075486 parameters, 0 gradients image 1/1 C:\Users\USER\Desktop\car-color detection\yolov5-master\blue_car.jpg: 544x640 1 blue car, 500.0ms Speed: 0.0ms pre-process, 500.0ms inference, 0.0ms NMS per image at shape (1, 3, 640, 640) Results saved to runs\detect\exp3 ```