Skip to content

Conversation

Copy link
Contributor

Copilot AI commented Nov 23, 2025

Backend errors (rate limits, timeouts, auth failures) were logged but never surfaced to users, leaving the UI in a perpetual thinking state with no feedback.

Changes

Error Classification (backend/application/chat/utilities/error_utils.py)

  • Added classify_llm_error() to detect error types from exception content
  • Detects rate limits, timeouts, auth failures by pattern matching exception messages
  • Returns domain-specific error class + user message + detailed log message

Domain Errors (backend/domain/errors.py)

  • Added RateLimitError, LLMTimeoutError, LLMAuthenticationError

WebSocket Error Handling (backend/main.py)

  • Catch typed errors and send to frontend with error_type field
  • User sees actionable message, logs retain full details

Example:

# Before: generic exception buried in logs
Exception("litellm.RateLimitError: We're experiencing high traffic...")

# After: classified and surfaced
classify_llm_error(error)
# Returns: (RateLimitError, 
#          "The AI service is experiencing high traffic. Please try again in a moment.",
#          "Rate limit error: litellm.RateLimitError: We're experiencing...")

Error messages are user-friendly, security-conscious (no API key exposure), and extensible.

Tests: 13 new tests covering classification logic and error flow

Original prompt

This section details on the original issue you should resolve

<issue_title>Failures due to rate throttling are not reported to the user</issue_title>
<issue_description>When using the Cerebras inference service, when a rate limit is hit, an error is returned. The ATLAS UI just sits there with no error reported to the user. The error is logged in the ATLAS app logs. It would be helpful to let the user know via the web UI that their request failed and they should try again later.

Here's an example of what the rate throttling error looks like from the ATLAS app logs:

Failed to call LLM with tools: litellm.RateLimitError: RateLimitError: CerebrasException - We're experiencing high traffic right now! Please try again soon.\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File "/app/backend/application/chat/service.py", line 250, in handle_chat_message\n return await orchestrator.execute(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/app/backend/application/chat/orchestrator.py", line 186, in execute\n return await self.tools_mode.run(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/app/backend/application/chat/modes/tools.py", line 89, in run\n llm_response = await error_utils.safe_call_llm_with_tools(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/app/backend/application/chat/utilities/error_utils.py", line 92, in safe_call_llm_with_tools\n raise ValidationError(f"Failed to call LLM with tools: {str(e)}")\ndomain.errors.ValidationError: Failed to call LLM with tools: Failed to call LLM with tools: litellm.RateLimitError: RateLimitError: CerebrasException - We're experiencing high traffic right now! Please tryagain soon.", "extra_taskName": "Task-225", "extra_otelSpanID": "0", "extra_otelTraceID": "0", "extra_otelTraceSampled": false, "extra_otelServiceName": "atlas-ui-3-backend”}
</issue_description>

Comments on the Issue (you are @copilot in this section)


✨ Let Copilot coding agent set things up for you — coding agent works faster and does higher quality work when set up for your repo.

@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

Copilot AI and others added 5 commits November 23, 2025 00:19
- Add new error types: RateLimitError, LLMTimeoutError, LLMAuthenticationError
- Implement classify_llm_error() to detect and categorize different error types
- Update safe_call_llm_with_tools() to use error classification
- Update WebSocket error handler to send specific error types and messages
- Add comprehensive error classification tests
- Ensure all backend errors surface to users with helpful hints

Co-authored-by: garland3 <[email protected]>
- Fix test that tried to modify immutable Exception class
- Add comprehensive documentation in docs/error_handling_improvements.md
- Add demo script to visualize error handling
- Add integration tests for error flow
- All tests passing (13/13)

Co-authored-by: garland3 <[email protected]>
- Fix f-string formatting in logger call (use % formatting)
- Fix test logic for API key check (use AND instead of OR)
- Improve test for user-friendly messages (check substrings not chars)
- All tests still passing (13/13)
- CodeQL security scan: 0 alerts ✅

Co-authored-by: garland3 <[email protected]>
- Add comprehensive visual diagram showing error flow
- Documents the complete path from error to user message
- Shows classification logic and error handling at each layer
- 501 total lines changed across 7 files

Co-authored-by: garland3 <[email protected]>
Copilot AI changed the title [WIP] Add user notifications for rate throttling failures Surface LLM errors to users with classified, actionable messages Nov 23, 2025
Copilot AI requested a review from garland3 November 23, 2025 00:30
Copilot finished work on behalf of garland3 November 23, 2025 00:30
@garland3
Copy link
Collaborator

@ktpedre can you review this?

@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

1 similar comment
@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

Copy link
Collaborator

@ktpedre ktpedre left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The changes look good to me visually scanning through. If I want to test live, should I just checkout the copilot/report-rate-throttling-errors branch and give it a try. It should be easy to recreate the throttling events by issuing a few queries.

@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

detail="Rate limit exceeded. Please try again later."
)

logger.info(f"Chat completion requested for model: {request.model}")

Check failure

Code scanning / CodeQL

Log Injection High

This log entry depends on a
user-provided value
.

Copilot Autofix

AI 1 day ago

To fix the log injection vulnerability, sanitize user input before logging. Specifically, remove or replace newline characters from user-supplied strings to prevent log injection attacks as recommended in the background. For this case, before logging request.model, process the value to remove \n and \r (and, optionally, mark or quote it to make it clear it's user-supplied). In the code, assign a sanitized version of request.model to a local variable (e.g., model_name) and use this sanitized value in the log entry.

Edits required:

  • In mocks/llm-mock/main_rate_limit.py, around line 180, create a sanitized version of request.model and log that instead.
  • No new methods or imports are needed, as Python string methods suffice.

Suggested changeset 1
mocks/llm-mock/main_rate_limit.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/mocks/llm-mock/main_rate_limit.py b/mocks/llm-mock/main_rate_limit.py
--- a/mocks/llm-mock/main_rate_limit.py
+++ b/mocks/llm-mock/main_rate_limit.py
@@ -177,7 +177,8 @@
             detail="Rate limit exceeded. Please try again later."
         )
 
-    logger.info(f"Chat completion requested for model: {request.model}")
+    model_name = str(request.model).replace('\r', '').replace('\n', '')
+    logger.info(f"Chat completion requested for model: {model_name}")
 
     # Simulate random errors
     error_type = should_simulate_error()
EOF
@@ -177,7 +177,8 @@
detail="Rate limit exceeded. Please try again later."
)

logger.info(f"Chat completion requested for model: {request.model}")
model_name = str(request.model).replace('\r', '').replace('\n', '')
logger.info(f"Chat completion requested for model: {model_name}")

# Simulate random errors
error_type = should_simulate_error()
Copilot is powered by AI and may make mistakes. Always verify output.
Unable to commit as this autofix suggestion is now outdated
@app.post("/test/scenario/{scenario}")
async def set_test_scenario(scenario: str, response_data: Dict[str, Any] = None):
"""Set specific test scenario for controlled testing."""
logger.info(f"Test scenario set: {scenario}")

Check failure

Code scanning / CodeQL

Log Injection High

This log entry depends on a
user-provided value
.

Copilot Autofix

AI 1 day ago

The problem arises from directly logging the user-provided scenario string. To mitigate log injection, we should sanitize the input before logging. The common, recommended approach for plain text logs is to remove or replace any newline and carriage return characters (\r, \n) from the user-provided value to prevent misleading or forged log entries.

The best fix here is to sanitize the scenario string immediately before logging it, replacing \r and \n with empty strings. You can achieve this inline in the log call or assign the sanitized value to a new variable before logging. Since we only see the relevant lines, apply the change directly on or immediately before line 266 in mocks/llm-mock/main_rate_limit.py. As this is a trivial Python string operation, no additional methods or imports are needed.


Suggested changeset 1
mocks/llm-mock/main_rate_limit.py

Autofix patch

Autofix patch
Run the following command in your local git repository to apply this patch
cat << 'EOF' | git apply
diff --git a/mocks/llm-mock/main_rate_limit.py b/mocks/llm-mock/main_rate_limit.py
--- a/mocks/llm-mock/main_rate_limit.py
+++ b/mocks/llm-mock/main_rate_limit.py
@@ -263,7 +263,8 @@
 @app.post("/test/scenario/{scenario}")
 async def set_test_scenario(scenario: str, response_data: Dict[str, Any] = None):
     """Set specific test scenario for controlled testing."""
-    logger.info(f"Test scenario set: {scenario}")
+    sanitized_scenario = scenario.replace('\r', '').replace('\n', '')
+    logger.info(f"Test scenario set: {sanitized_scenario}")
 
     # Check rate limit
     if not rate_limiter.is_allowed():
EOF
@@ -263,7 +263,8 @@
@app.post("/test/scenario/{scenario}")
async def set_test_scenario(scenario: str, response_data: Dict[str, Any] = None):
"""Set specific test scenario for controlled testing."""
logger.info(f"Test scenario set: {scenario}")
sanitized_scenario = scenario.replace('\r', '').replace('\n', '')
logger.info(f"Test scenario set: {sanitized_scenario}")

# Check rate limit
if not rate_limiter.is_allowed():
Copilot is powered by AI and may make mistakes. Always verify output.
Unable to commit as this autofix suggestion is now outdated
@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

@garland3 garland3 marked this pull request as ready for review November 25, 2025 04:47
Copilot AI review requested due to automatic review settings November 25, 2025 04:47
@garland3 garland3 merged commit 0f1fba9 into main Nov 25, 2025
8 checks passed
@garland3 garland3 deleted the copilot/report-rate-throttling-errors branch November 25, 2025 04:47
@github-actions
Copy link

🔒 Security Scan Results

Security Scan Summary

Scan Results

Python SAST (Bandit)

⚠️ Security issues found in Python code

Recommendations

  • Review all SARIF files uploaded to GitHub Security tab
  • Address high and critical severity vulnerabilities immediately
  • Run npm audit fix and pip-audit locally to fix dependencies
  • Consider implementing additional security controls

Copilot finished reviewing on behalf of garland3 November 25, 2025 04:50
Copy link

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull request overview

This PR implements comprehensive error handling for LLM service failures, addressing the issue where users were left with no feedback when rate limits or other backend errors occurred. The implementation classifies errors into specific domain types (rate limits, timeouts, authentication failures) and surfaces user-friendly messages to the frontend while logging detailed information for debugging.

Key changes:

  • Error classification system that transforms technical LLM errors into user-friendly messages
  • New domain error types for rate limits, timeouts, and authentication failures
  • Enhanced WebSocket error handling with categorized error types sent to frontend

Reviewed changes

Copilot reviewed 15 out of 15 changed files in this pull request and generated 9 comments.

Show a summary per file
File Description
backend/domain/errors.py Added new error types: RateLimitError, LLMTimeoutError, LLMAuthenticationError, LLMServiceError
backend/application/chat/utilities/error_utils.py Implemented classify_llm_error() function to detect and classify errors with user-friendly messages
backend/main.py Enhanced WebSocket handler to catch specific error types and send categorized error responses to frontend
backend/application/chat/service.py Added logic to bubble up DomainError exceptions to transport layer for consistent handling
backend/tests/test_error_classification.py Unit tests for error classification (9 test cases)
backend/tests/test_error_flow_integration.py Integration tests for error flow (4 test cases)
docs/developer/error_handling_improvements.md Documentation explaining error handling improvements and error messages
docs/developer/error_flow_diagram.md Visual diagram showing complete error flow from LLM to UI
docs/developer/README.md Updated to reference new error handling documentation
scripts/demo_error_handling.py Demonstration script showing error classification examples
mocks/llm-mock/main_rate_limit.py Mock LLM server with rate limiting and error simulation for testing
config/defaults/llmconfig-buggy.yml Configuration for mock rate-limited LLM server
agent_start.sh Improved process cleanup to avoid killing all Python processes
.env.example Changed APP_NAME from "Chat UI 13" to "ATLAS"
IMPLEMENTATION_SUMMARY.md Comprehensive summary of implementation and testing results
Comments suppressed due to low confidence (6)

backend/application/chat/service.py:4

  • Import of 'json' is not used.
import json

backend/application/chat/service.py:5

  • Import of 'asyncio' is not used.
import asyncio

backend/application/chat/service.py:26

  • Import of 'tool_utils' is not used.
    Import of 'notification_utils' is not used.
from .utilities import tool_utils, file_utils, notification_utils, error_utils

backend/application/chat/service.py:28

  • Import of 'AgentContext' is not used.
    Import of 'AgentEvent' is not used.
from .agent.protocols import AgentContext, AgentEvent

backend/application/chat/service.py:29

  • Import of 'create_authorization_manager' is not used.
from core.auth_utils import create_authorization_manager

backend/application/chat/utilities/error_utils.py:334

  • Illegal class 'NoneType' raised; will result in a TypeError being raised instead.
    raise last_error

Comment on lines +110 to +113
error_types = ["server_error", "network_error", None, None, None, None]
error_type = random.choice(error_types)

if error_type:
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The docstring states "~10% chance of server or network error" but the implementation has a 2/6 (approximately 33%) chance. The error_types list has 2 error values out of 6 total elements. Update the documentation to reflect the actual probability, or adjust the list to match the documented 10% (e.g., use 1 error type and 9 None values for ~10%).

Suggested change
error_types = ["server_error", "network_error", None, None, None, None]
error_type = random.choice(error_types)
if error_type:
# 1 in 10 chance (~10%) of simulating an error
error_types = ["error"] + [None] * 9
error_marker = random.choice(error_types)
if error_marker:
error_type = random.choice(["server_error", "network_error"])

Copilot uses AI. Check for mistakes.
logger.warning("Rate limit exceeded, locking out for 30 seconds")
return False

from datetime import timedelta
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The timedelta import should be moved to line 14 with the other datetime imports. Import statements should be organized at the top of the file, not scattered throughout the code.

Copilot uses AI. Check for mistakes.
Comment on lines +1 to +81
```markdown
# Error Handling Improvements

## Problem
When backend errors occurred (especially rate limiting from services like Cerebras), users were left staring at a non-responsive UI with no indication of what went wrong. Errors were only visible in backend logs.

## Solution
Implemented comprehensive error classification and user-friendly error messaging system.

## Changes

### 1. New Error Types (`backend/domain/errors.py`)
- `RateLimitError` - For rate limiting scenarios
- `LLMTimeoutError` - For timeout scenarios
- `LLMAuthenticationError` - For authentication failures
- `LLMServiceError` - For generic LLM service failures

### 2. Error Classification (`backend/application/chat/utilities/error_utils.py`)
Added `classify_llm_error()` function that:
- Detects error type from exception class name or message content
- Returns appropriate domain error class
- Provides user-friendly message (shown in UI)
- Provides detailed log message (for debugging)

### 3. WebSocket Error Handling (`backend/main.py`)
Enhanced error handling to:
- Catch specific error types (RateLimitError, LLMTimeoutError, etc.)
- Send user-friendly messages to frontend
- Include `error_type` field for frontend categorization
- Log full error details for debugging

### 4. Tests
- `backend/tests/test_error_classification.py` - Unit tests for error classification
- `backend/tests/test_error_flow_integration.py` - Integration tests
- `scripts/demo_error_handling.py` - Visual demonstration

## Example: Rate Limiting Error

### Before
```
User sends message → Rate limit hit → UI sits there thinking forever
Backend logs: "litellm.RateLimitError: CerebrasException - We're experiencing high traffic..."
User: 🤷 *No idea what's happening*
```
### After
```
User sends message → Rate limit hit → Error displayed in chat
UI shows: "The AI service is experiencing high traffic. Please try again in a moment."
Backend logs: "Rate limit error: litellm.RateLimitError: CerebrasException - We're experiencing high traffic..."
User: ✅ *Knows to wait and try again*
```
## Error Messages
| Error Type | User Message | When It Happens |
|------------|--------------|-----------------|
| **RateLimitError** | "The AI service is experiencing high traffic. Please try again in a moment." | API rate limits exceeded |
| **LLMTimeoutError** | "The AI service request timed out. Please try again." | Request takes too long |
| **LLMAuthenticationError** | "There was an authentication issue with the AI service. Please contact your administrator." | Invalid API keys, auth failures |
| **LLMServiceError** | "The AI service encountered an error. Please try again or contact support if the issue persists." | Generic LLM service errors |
## Security & Privacy
- Sensitive details (API keys, etc.) NOT exposed to users
- Full error details logged for admin debugging
- User messages are helpful but non-technical
## Testing
Run the demonstration:
```bash
python scripts/demo_error_handling.py
```

Run tests:
```bash
cd backend
export PYTHONPATH=/path/to/atlas-ui-3/backend
python -m pytest tests/test_error_classification.py -v
python -m pytest tests/test_error_flow_integration.py -v
```
```
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This markdown file is incorrectly wrapped in a code fence. The opening markdown on line 1 and closing on line 81 should be removed. Markdown documentation files should not be wrapped in code fences.

Copilot uses AI. Check for mistakes.
Comment on lines +1 to +156
```markdown
# Error Flow Diagram

## Complete Error Handling Flow

```
┌─────────────────────────────────────────────────────────────────────┐
│ USER SENDS MESSAGE │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ WebSocket Handler (main.py) │
│ handle_chat() async function │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ ChatService.handle_chat_message() │
│ (service.py) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ ChatOrchestrator.execute() │
│ (orchestrator.py) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ ToolsModeRunner.run() │
│ (modes/tools.py) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ error_utils.safe_call_llm_with_tools() │
│ (utilities/error_utils.py) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ LLMCaller.call_with_tools() │
│ (modules/llm/litellm_caller.py) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ LiteLLM Library │
│ (calls Cerebras/OpenAI/etc.) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────┴─────────────┐
│ │
┌──────▼───────┐ ┌───────▼────────┐
│ SUCCESS │ │ ERROR │
│ (200 OK) │ │ (Rate Limit) │
└──────┬───────┘ └───────┬────────┘
│ │
│ ▼
│ ┌──────────────────────────────┐
│ │ Exception: RateLimitError │
│ │ "We're experiencing high │
│ │ traffic right now!" │
│ └──────────┬───────────────────┘
│ │
│ ▼
│ ┌──────────────────────────────┐
│ │ error_utils.classify_llm_
│ │ error(exception) │
│ │ │
│ │ Returns: │
│ │ - error_class: RateLimitError│
│ │ - user_msg: "The AI service │
│ │ is experiencing high │
│ │ traffic..." │
│ │ - log_msg: Full details │
│ └──────────┬───────────────────┘
│ │
│ ▼
│ ┌──────────────────────────────┐
│ │ Raise RateLimitError(user_msg)│
│ └──────────┬───────────────────┘
│ │
│ ▼
┌───────────────────┴─────────────────────────┴─────────────────────┐
│ Back to WebSocket Handler (main.py) │
│ Exception Catching │
└────────────────────────────────────────────────────────────────────┘
┌─────────────┴─────────────┐
│ │
┌──────▼────────┐ ┌────────▼────────────┐
│ except │ │ except │
│ RateLimitError │ │ LLMTimeoutError │
│ │ │ LLMAuth...Error │
│ Send to user: │ │ ValidationError │
│ { │ │ etc. │
│ type: "error",│ │ │
│ message: user │ │ Send appropriate │
│ friendly msg,│ │ message to user │
│ error_type: │ │ │
│ "rate_limit" │ │ │
│ } │ │ │
└───────┬────────┘ └────────┬────────────┘
│ │
└──────────┬───────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ WebSocket Message Sent │
│ { │
│ "type": "error", │
│ "message": "The AI service is experiencing high traffic...", │
│ "error_type": "rate_limit" │
│ } │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ Frontend (websocketHandlers.js) │
│ │
│ case 'error': │
│ setIsThinking(false) │
│ addMessage({ │
│ role: 'system', │
│ content: `Error: ${data.message}`, │
│ timestamp: new Date().toISOString() │
│ }) │
└─────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────┐
│ UI DISPLAYS ERROR │
│ │
│ System Message: │
│ "Error: The AI service is experiencing high traffic. │
│ Please try again in a moment." │
│ │
[User can see the error and knows what to do]
└─────────────────────────────────────────────────────────────────────┘
```
## Key Points
1. **Error Classification**: The `classify_llm_error()` function examines the exception type and message to determine the appropriate error category.
2. **User-Friendly Messages**: Technical errors are translated into helpful, actionable messages for users.
3. **Detailed Logging**: Full error details are logged for debugging purposes (not shown to users).
4. **Error Type Field**: The `error_type` field allows the frontend to potentially handle different error types differently in the future (e.g., automatic retry for timeouts).
5. **No Sensitive Data Exposure**: API keys, stack traces, and other sensitive information are never sent to the frontend.
```
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This markdown file is incorrectly wrapped in a code fence. The opening markdown on line 1 and closing on line 156 should be removed. Markdown documentation files should not be wrapped in code fences.

Copilot uses AI. Check for mistakes.
Comment on lines +1 to +138
# Implementation Complete: Rate Limiting & Backend Error Reporting

## ✅ Task Completed Successfully

All backend errors (including rate limiting) are now properly reported to users with helpful, actionable messages.

---

## What Was Changed

### 1. Error Classification System
Created a comprehensive error detection and classification system that:
- Detects rate limit errors (Cerebras, OpenAI, etc.)
- Detects timeout errors
- Detects authentication failures
- Handles generic LLM errors

### 2. User-Friendly Error Messages
Users now see helpful messages instead of silence:

| Situation | User Sees |
|-----------|-----------|
| Rate limit hit | "The AI service is experiencing high traffic. Please try again in a moment." |
| Request timeout | "The AI service request timed out. Please try again." |
| Auth failure | "There was an authentication issue with the AI service. Please contact your administrator." |
| Other errors | "The AI service encountered an error. Please try again or contact support if the issue persists." |

### 3. Security & Privacy
- ✅ No sensitive information (API keys, internal errors) exposed to users
- ✅ Full error details still logged for debugging
- ✅ CodeQL security scan: 0 vulnerabilities

---

## Files Modified (8 files, 501 lines)

### Backend Core
- `backend/domain/errors.py` - New error types
- `backend/application/chat/utilities/error_utils.py` - Error classification logic
- `backend/main.py` - Enhanced WebSocket error handling

### Tests (All Passing ✅)
- `backend/tests/test_error_classification.py` - 9 unit tests
- `backend/tests/test_error_flow_integration.py` - 4 integration tests

### Documentation
- `docs/error_handling_improvements.md` - Complete guide
- `docs/error_flow_diagram.md` - Visual flow diagram
- `scripts/demo_error_handling.py` - Interactive demonstration

---

## How to Test

### 1. Run Automated Tests
```bash
cd backend
export PYTHONPATH=/path/to/atlas-ui-3/backend
python -m pytest tests/test_error_classification.py tests/test_error_flow_integration.py -v
```
**Result**: 13/13 tests passing ✅

### 2. View Demonstration
```bash
python scripts/demo_error_handling.py
```
Shows examples of all error types and their user-friendly messages.

### 3. Manual Testing (Optional)
To see the error handling in action:
1. Start the backend server
2. Configure an invalid API key or trigger a rate limit
3. Send a message through the UI
4. Observe the error message displayed to the user

---

## Before & After Example

### Before (The Problem)
```
User: *Sends a message*
Backend: *Hits Cerebras rate limit*
UI: *Sits there thinking... forever*
Backend Logs: "litellm.RateLimitError: We're experiencing high traffic..."
User: 🤷 "Is it broken? Should I refresh? Wait?"
```

### After (The Solution)
```
User: *Sends a message*
Backend: *Hits Cerebras rate limit*
UI: *Shows error message in chat*
"The AI service is experiencing high traffic.
Please try again in a moment."
Backend Logs: "Rate limit error: litellm.RateLimitError: ..."
User: ✅ "OK, I'll wait a bit and try again"
```

---

## Key Benefits

1. **Better User Experience**: Users know what happened and what to do
2. **Reduced Support Burden**: Fewer "why isn't it working?" questions
3. **Maintained Security**: No sensitive data exposed
4. **Better Debugging**: Full error details still logged
5. **Extensible**: Easy to add new error types in the future

---

## What Happens Now

The error classification system is now active and will:
- Automatically detect and classify backend errors
- Send user-friendly messages to the frontend
- Log detailed error information for debugging
- Work for any LLM provider (Cerebras, OpenAI, Anthropic, etc.)

No further action needed - the system is ready to use!

---

## Documentation

For more details, see:
- `docs/error_handling_improvements.md` - Complete technical documentation
- `docs/error_flow_diagram.md` - Visual diagram of error flow
- Code comments in modified files

---

## Security Verification

✅ CodeQL Security Scan: **0 alerts**
✅ Code Review: **All comments addressed**
✅ Tests: **13/13 passing**
✅ No sensitive data exposure verified
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove emojis from this documentation file. The codebase convention is "No emojis please" in code or docs. Replace checkmarks and other emojis with text equivalents (e.g., "✅" → "[PASS]" or "DONE").

Copilot generated this review using guidance from repository custom instructions.
Comment on lines +79 to +91
print("""
✅ All errors are now properly classified and communicated to users
Key improvements:
1. Rate limit errors → Clear message to wait and try again
2. Timeout errors → Clear message about timeout, suggest retry
3. Auth errors → User told to contact admin (no key exposure)
4. Generic errors → Helpful message with support guidance
✅ Detailed error information is still logged for debugging
✅ No sensitive information is exposed to users
✅ Users are no longer left wondering what happened
""")
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove emojis from this script. The codebase convention is "No emojis please" in code or docs. Replace checkmarks with text equivalents (e.g., "✅" → "[PASS]" or "DONE").

Copilot generated this review using guidance from repository custom instructions.
Comment on lines +43 to +51
User: 🤷 *No idea what's happening*
```
### After
```
User sends message → Rate limit hit → Error displayed in chat
UI shows: "The AI service is experiencing high traffic. Please try again in a moment."
Backend logs: "Rate limit error: litellm.RateLimitError: CerebrasException - We're experiencing high traffic..."
User: ✅ *Knows to wait and try again*
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove emojis from this documentation file. The codebase convention is "No emojis please" in code or docs. Replace emojis with text equivalents.

Copilot generated this review using guidance from repository custom instructions.
)
from domain.sessions.models import Session
from domain.errors import DomainError
from interfaces.llm import LLMProtocol, LLMResponse
Copy link

Copilot AI Nov 25, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Import of 'LLMResponse' is not used.

Suggested change
from interfaces.llm import LLMProtocol, LLMResponse
from interfaces.llm import LLMProtocol

Copilot uses AI. Check for mistakes.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

Failures due to rate throttling are not reported to the user

3 participants