Skip to content

Commit

Permalink
Fix ruff config
Browse files Browse the repository at this point in the history
Signed-off-by: zethson <[email protected]>
  • Loading branch information
Zethson committed Feb 6, 2024
1 parent 1ab89e0 commit b8f7359
Show file tree
Hide file tree
Showing 21 changed files with 126 additions and 85 deletions.
16 changes: 10 additions & 6 deletions pertpy/metadata/_cell_line.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,7 @@ def annotate(
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.dialogue_example()
>>> adata.obs['cell_line_name'] = 'MCF7'
>>> adata.obs["cell_line_name"] = "MCF7"
>>> pt_metadata = pt.md.CellLine()
>>> adata_annotated = pt_metadata.annotate(adata=adata,
>>> reference_id='cell_line_name',
Expand Down Expand Up @@ -332,9 +332,11 @@ def annotate_bulk_rna(
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.dialogue_example()
>>> adata.obs['cell_line_name'] = 'MCF7'
>>> adata.obs["cell_line_name"] = "MCF7"
>>> pt_metadata = pt.md.CellLine()
>>> adata_annotated = pt_metadata.annotate(adata=adata, reference_id='cell_line_name', query_id='cell_line_name', copy=True)
>>> adata_annotated = pt_metadata.annotate(
... adata=adata, reference_id="cell_line_name", query_id="cell_line_name", copy=True
... )
>>> pt_metadata.annotate_bulk_rna(adata_annotated)
"""
if copy:
Expand Down Expand Up @@ -433,9 +435,11 @@ def annotate_protein_expression(
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.dialogue_example()
>>> adata.obs['cell_line_name'] = 'MCF7'
>>> adata.obs["cell_line_name"] = "MCF7"
>>> pt_metadata = pt.md.CellLine()
>>> adata_annotated = pt_metadata.annotate(adata=adata, reference_id='cell_line_name', query_id='cell_line_name', copy=True)
>>> adata_annotated = pt_metadata.annotate(
... adata=adata, reference_id="cell_line_name", query_id="cell_line_name", copy=True
... )
>>> pt_metadata.annotate_protein_expression(adata_annotated)
"""
if copy:
Expand Down Expand Up @@ -520,7 +524,7 @@ def annotate_from_gdsc(
>>> import pertpy as pt
>>> adata = pt.dt.mcfarland_2020()
>>> pt_metadata = pt.md.CellLine()
>>> pt_metadata.annotate_from_gdsc(adata, query_id='cell_line')
>>> pt_metadata.annotate_from_gdsc(adata, query_id="cell_line")
"""
if copy:
adata = adata.copy()
Expand Down
12 changes: 9 additions & 3 deletions pertpy/plot/_augur.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,9 @@ def important_features(
>>> adata = pt.dt.sc_sim_augur()
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
>>> loaded_data = ag_rfc.load(adata)
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(
... loaded_data, subsample_size=20, select_variance_features=True, n_threads=4
... )
>>> ag_rfc.plot_important_features(v_results)
"""
warnings.warn(
Expand Down Expand Up @@ -115,7 +117,9 @@ def lollipop(
>>> adata = pt.dt.sc_sim_augur()
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
>>> loaded_data = ag_rfc.load(adata)
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(
... loaded_data, subsample_size=20, select_variance_features=True, n_threads=4
... )
>>> ag_rfc.plot_lollipop(v_results)
"""
warnings.warn(
Expand Down Expand Up @@ -152,7 +156,9 @@ def scatterplot(
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
>>> loaded_data = ag_rfc.load(adata)
>>> h_adata, h_results = ag_rfc.predict(loaded_data, subsample_size=20, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(
... loaded_data, subsample_size=20, select_variance_features=True, n_threads=4
... )
>>> ag_rfc.plot_scatterplot(v_results, h_results)
"""
warnings.warn(
Expand Down
4 changes: 3 additions & 1 deletion pertpy/plot/_coda.py
Original file line number Diff line number Diff line change
Expand Up @@ -594,7 +594,9 @@ def effects_umap( # pragma: no cover
>>> pen_args={"phi": 0, "lambda_1": 3.5},
>>> tree_key="tree"
>>> )
>>> tasccoda_model.run_nuts(tasccoda_data, modality_key="coda", rng_key=1234, num_samples=10000, num_warmup=1000)
>>> tasccoda_model.run_nuts(
... tasccoda_data, modality_key="coda", rng_key=1234, num_samples=10000, num_warmup=1000
... )
>>> tasccoda_model.plot_effects_umap(tasccoda_data,
>>> effect_name=["effect_df_condition[T.Salmonella]",
>>> "effect_df_condition[T.Hpoly.Day3]",
Expand Down
2 changes: 1 addition & 1 deletion pertpy/plot/_guide_rna.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def heatmap(
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> gdo = mdata.mod['gdo']
>>> gdo = mdata.mod["gdo"]
>>> ga = pt.pp.GuideAssignment()
>>> ga.assign_by_threshold(gdo, assignment_threshold=5)
>>> ga.plot_heatmap(gdo)
Expand Down
2 changes: 1 addition & 1 deletion pertpy/plot/_milopy.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ def da_beeswarm(
>>> milo.make_nhoods(mdata["rna"])
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
>>> milo.da_nhoods(mdata, design="~label")
>>> milo.annotate_nhoods(mdata, anno_col='cell_type')
>>> milo.annotate_nhoods(mdata, anno_col="cell_type")
>>> milo.plot_da_beeswarm(mdata)
"""
warnings.warn(
Expand Down
38 changes: 22 additions & 16 deletions pertpy/plot/_mixscape.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,9 @@ def barplot( # pragma: no cover
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> ms = pt.tl.Mixscape()
>>> ms.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
>>> ms.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
>>> ms.plot_barplot(mdata['rna'], guide_rna_column='NT')
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
>>> ms.plot_barplot(mdata["rna"], guide_rna_column="NT")
"""
warnings.warn(
"This function is deprecated and will be removed in pertpy 0.8.0!"
Expand Down Expand Up @@ -109,9 +109,11 @@ def heatmap( # pragma: no cover
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> ms = pt.tl.Mixscape()
>>> ms.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
>>> ms.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
>>> ms.plot_heatmap(adata = mdata['rna'], labels='gene_target', target_gene='IFNGR2', layer='X_pert', control='NT')
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
>>> ms.plot_heatmap(
... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", layer="X_pert", control="NT"
... )
"""
warnings.warn(
"This function is deprecated and will be removed in pertpy 0.8.0!"
Expand Down Expand Up @@ -173,9 +175,11 @@ def perturbscore( # pragma: no cover
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> mixscape_identifier = pt.tl.Mixscape()
>>> mixscape_identifier.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
>>> mixscape_identifier.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
>>> mixscape_identifier.perturbscore(adata = mdata['rna'], labels='gene_target', target_gene='IFNGR2', color = 'orange')
>>> mixscape_identifier.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
>>> mixscape_identifier.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
>>> mixscape_identifier.perturbscore(
... adata=mdata["rna"], labels="gene_target", target_gene="IFNGR2", color="orange"
... )
"""
warnings.warn(
"This function is deprecated and will be removed in pertpy 0.8.0!"
Expand Down Expand Up @@ -247,9 +251,11 @@ def violin( # pragma: no cover
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> ms = pt.tl.Mixscape()
>>> ms.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
>>> ms.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
>>> ms.plot_violin(adata = mdata['rna'], target_gene_idents=['NT', 'IFNGR2 NP', 'IFNGR2 KO'], groupby='mixscape_class')
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
>>> ms.plot_violin(
... adata=mdata["rna"], target_gene_idents=["NT", "IFNGR2 NP", "IFNGR2 KO"], groupby="mixscape_class"
... )
"""
warnings.warn(
"This function is deprecated and will be removed in pertpy 0.8.0!"
Expand Down Expand Up @@ -319,10 +325,10 @@ def lda( # pragma: no cover
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> ms = pt.tl.Mixscape()
>>> ms.perturbation_signature(mdata['rna'], 'perturbation', 'NT', 'replicate')
>>> ms.mixscape(adata = mdata['rna'], control = 'NT', labels='gene_target', layer='X_pert')
>>> ms.lda(adata=mdata['rna'], control='NT', labels='gene_target', layer='X_pert')
>>> ms.plot_lda(adata=mdata['rna'], control='NT')
>>> ms.perturbation_signature(mdata["rna"], "perturbation", "NT", "replicate")
>>> ms.mixscape(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
>>> ms.lda(adata=mdata["rna"], control="NT", labels="gene_target", layer="X_pert")
>>> ms.plot_lda(adata=mdata["rna"], control="NT")
"""
warnings.warn(
"This function is deprecated and will be removed in pertpy 0.8.0!"
Expand Down
6 changes: 3 additions & 3 deletions pertpy/preprocessing/_guide_rna.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def assign_by_threshold(
>>> import pertpy as pt
>>> mdata = pt.data.papalexi_2021()
>>> gdo = mdata.mod['gdo']
>>> gdo = mdata.mod["gdo"]
>>> ga = pt.pp.GuideAssignment()
>>> ga.assign_by_threshold(gdo, assignment_threshold=5)
"""
Expand Down Expand Up @@ -86,7 +86,7 @@ def assign_to_max_guide(
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> gdo = mdata.mod['gdo']
>>> gdo = mdata.mod["gdo"]
>>> ga = pt.pp.GuideAssignment()
>>> ga.assign_to_max_guide(gdo, assignment_threshold=5)
"""
Expand Down Expand Up @@ -143,7 +143,7 @@ def plot_heatmap(
>>> import pertpy as pt
>>> mdata = pt.dt.papalexi_2021()
>>> gdo = mdata.mod['gdo']
>>> gdo = mdata.mod["gdo"]
>>> ga = pt.pp.GuideAssignment()
>>> ga.assign_by_threshold(gdo, assignment_threshold=5)
>>> ga.heatmap(gdo)
Expand Down
16 changes: 12 additions & 4 deletions pertpy/tools/_augur.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,9 @@ def sample(self, adata: AnnData, categorical: bool, subsample_size: int, random_
>>> loaded_data = ag_rfc.load(adata)
>>> ag_rfc.select_highly_variable(loaded_data)
>>> features = loaded_data.var_names
>>> subsample = ag_rfc.sample(loaded_data, categorical=True, subsample_size=20, random_state=42, features=loaded_data.var_names)
>>> subsample = ag_rfc.sample(
... loaded_data, categorical=True, subsample_size=20, random_state=42, features=loaded_data.var_names
... )
"""
# export subsampling.
random.seed(random_state)
Expand Down Expand Up @@ -1051,7 +1053,9 @@ def plot_important_features(
>>> adata = pt.dt.sc_sim_augur()
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
>>> loaded_data = ag_rfc.load(adata)
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(
... loaded_data, subsample_size=20, select_variance_features=True, n_threads=4
... )
>>> ag_rfc.plot_important_features(v_results)
"""
if isinstance(data, AnnData):
Expand Down Expand Up @@ -1101,7 +1105,9 @@ def plot_lollipop(
>>> adata = pt.dt.sc_sim_augur()
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
>>> loaded_data = ag_rfc.load(adata)
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(
... loaded_data, subsample_size=20, select_variance_features=True, n_threads=4
... )
>>> ag_rfc.plot_lollipop(v_results)
"""
if isinstance(data, AnnData):
Expand Down Expand Up @@ -1149,7 +1155,9 @@ def plot_scatterplot(
>>> ag_rfc = pt.tl.Augur("random_forest_classifier")
>>> loaded_data = ag_rfc.load(adata)
>>> h_adata, h_results = ag_rfc.predict(loaded_data, subsample_size=20, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(loaded_data, subsample_size=20, select_variance_features=True, n_threads=4)
>>> v_adata, v_results = ag_rfc.predict(
... loaded_data, subsample_size=20, select_variance_features=True, n_threads=4
... )
>>> ag_rfc.plot_scatterplot(v_results, h_results)
"""
cell_types = results1["summary_metrics"].columns
Expand Down
4 changes: 3 additions & 1 deletion pertpy/tools/_coda/_base_coda.py
Original file line number Diff line number Diff line change
Expand Up @@ -2141,7 +2141,9 @@ def plot_effects_umap( # pragma: no cover
>>> pen_args={"phi": 0, "lambda_1": 3.5},
>>> tree_key="tree"
>>> )
>>> tasccoda_model.run_nuts(tasccoda_data, modality_key="coda", rng_key=1234, num_samples=10000, num_warmup=1000)
>>> tasccoda_model.run_nuts(
... tasccoda_data, modality_key="coda", rng_key=1234, num_samples=10000, num_warmup=1000
... )
>>> tasccoda_model.plot_effects_umap(tasccoda_data,
>>> effect_name=["effect_df_condition[T.Salmonella]",
>>> "effect_df_condition[T.Hpoly.Day3]",
Expand Down
2 changes: 1 addition & 1 deletion pertpy/tools/_coda/_tasccoda.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,7 @@ def set_init_mcmc_states(self, rng_key: None, ref_index: np.ndarray, sample_adat
>>> mdata = tasccoda.prepare(
>>> mdata, formula="Health", reference_cell_type="automatic", tree_key="lineage", pen_args={"phi": 0}
>>> )
>>> adata = tasccoda.set_init_mcmc_states(rng_key=42, ref_index=[0,1], sample_adata=mdata['coda'])
>>> adata = tasccoda.set_init_mcmc_states(rng_key=42, ref_index=[0, 1], sample_adata=mdata["coda"])
"""
N, D = sample_adata.obsm["covariate_matrix"].shape
P = sample_adata.X.shape[1]
Expand Down
4 changes: 3 additions & 1 deletion pertpy/tools/_dialogue.py
Original file line number Diff line number Diff line change
Expand Up @@ -623,7 +623,9 @@ def calculate_multifactor_PMD(
>>> import scanpy as sc
>>> adata = pt.dt.dialogue_example()
>>> sc.pp.pca(adata)
>>> dl = pt.tl.Dialogue(sample_id = "clinical.status", celltype_key = "cell.subtypes", n_counts_key = "nCount_RNA", n_mpcs = 3)
>>> dl = pt.tl.Dialogue(
... sample_id="clinical.status", celltype_key="cell.subtypes", n_counts_key="nCount_RNA", n_mpcs=3
... )
>>> adata, mcps, ws, ct_subs = dl.calculate_multifactor_PMD(adata, normalize=True)
"""
# IMPORTANT NOTE: the order in which matrices are passed to multicca matters.
Expand Down
16 changes: 8 additions & 8 deletions pertpy/tools/_distances/_distance_tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ class DistanceTest:
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.distance_example_data()
>>> distance_test = pt.tl.DistanceTest('edistance', n_perms=1000)
>>> tab = distance_test(adata, groupby='perturbation', contrast='control')
>>> distance_test = pt.tl.DistanceTest("edistance", n_perms=1000)
>>> tab = distance_test(adata, groupby="perturbation", contrast="control")
"""

def __init__(
Expand Down Expand Up @@ -100,8 +100,8 @@ def __call__(
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.distance_example_data()
>>> distance_test = pt.tl.DistanceTest('edistance', n_perms=1000)
>>> tab = distance_test(adata, groupby='perturbation', contrast='control')
>>> distance_test = pt.tl.DistanceTest("edistance", n_perms=1000)
>>> tab = distance_test(adata, groupby="perturbation", contrast="control")
"""
if self.distance.metric_fct.accepts_precomputed:
# Much faster if the metric can be called on the precomputed
Expand Down Expand Up @@ -134,8 +134,8 @@ def test_xy(self, adata: AnnData, groupby: str, contrast: str, show_progressbar:
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.distance_example_data()
>>> distance_test = pt.tl.DistanceTest('edistance', n_perms=1000)
>>> test_results = distance_test.test_xy(adata, groupby='perturbation', contrast='control')
>>> distance_test = pt.tl.DistanceTest("edistance", n_perms=1000)
>>> test_results = distance_test.test_xy(adata, groupby="perturbation", contrast="control")
"""
groups = adata.obs[groupby].unique()
if contrast not in groups:
Expand Down Expand Up @@ -226,8 +226,8 @@ def test_precomputed(self, adata: AnnData, groupby: str, contrast: str, verbose:
Examples:
>>> import pertpy as pt
>>> adata = pt.dt.distance_example_data()
>>> distance_test = pt.tl.DistanceTest('edistance', n_perms=1000)
>>> test_results = distance_test.test_precomputed(adata, groupby='perturbation', contrast='control')
>>> distance_test = pt.tl.DistanceTest("edistance", n_perms=1000)
>>> test_results = distance_test.test_precomputed(adata, groupby="perturbation", contrast="control")
"""
if not self.distance.metric_fct.accepts_precomputed:
raise ValueError(f"Metric {self.metric} does not accept precomputed distances.")
Expand Down
6 changes: 3 additions & 3 deletions pertpy/tools/_milo.py
Original file line number Diff line number Diff line change
Expand Up @@ -429,7 +429,7 @@ def annotate_nhoods(
>>> sc.pp.neighbors(mdata["rna"])
>>> milo.make_nhoods(mdata["rna"])
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
>>> milo.annotate_nhoods(mdata, anno_col='cell_type')
>>> milo.annotate_nhoods(mdata, anno_col="cell_type")
"""
try:
sample_adata = mdata["milo"]
Expand Down Expand Up @@ -480,7 +480,7 @@ def annotate_nhoods_continuous(self, mdata: MuData, anno_col: str, feature_key:
>>> sc.pp.neighbors(mdata["rna"])
>>> milo.make_nhoods(mdata["rna"])
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
>>> milo.annotate_nhoods_continuous(mdata, anno_col='nUMI')
>>> milo.annotate_nhoods_continuous(mdata, anno_col="nUMI")
"""
if "milo" not in mdata.mod:
raise ValueError(
Expand Down Expand Up @@ -845,7 +845,7 @@ def plot_da_beeswarm(
>>> milo.make_nhoods(mdata["rna"])
>>> mdata = milo.count_nhoods(mdata, sample_col="orig.ident")
>>> milo.da_nhoods(mdata, design="~label")
>>> milo.annotate_nhoods(mdata, anno_col='cell_type')
>>> milo.annotate_nhoods(mdata, anno_col="cell_type")
>>> milo.plot_da_beeswarm(mdata)
"""
try:
Expand Down
Loading

0 comments on commit b8f7359

Please sign in to comment.