Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support reading for lambda-detector Nexus files #566

Merged
merged 4 commits into from
May 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/fabio/fabioformats.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
__contact__ = "[email protected]"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "10/02/2023"
__date__ = "02/05/2024"
__status__ = "stable"
__docformat__ = 'restructuredtext'

Expand Down Expand Up @@ -91,6 +91,7 @@ def importer(module_name):
("mrcimage", "MrcImage"),
("esperantoimage", "EsperantoImage"),
("limaimage", "LimaImage"),
("lambdaimage", "LambdaImage"),
# For compatibility (maybe not needed)
("adscimage", "AdscImage"),
("sparseimage", "SparseImage"),
Expand Down
259 changes: 259 additions & 0 deletions src/fabio/lambdaimage.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
# coding: utf-8
#
# Project: X-ray image reader
# https://github.com/silx-kit/fabio
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.

"""
Basic read support for NeXus/HDF5 files saved by Lambda-detectors.
"""

__authors__ = ["Jérôme Kieffer"]
__contact__ = "[email protected]"
__license__ = "MIT"
__copyright__ = "ESRF"
__date__ = "02/05/2024"

import logging
logger = logging.getLogger(__name__)
import posixpath
import os
import numpy
from .fabioimage import FabioImage
from .fabioutils import NotGoodReader
from . import nexus
try:
import h5py
except ImportError:
h5py = None
try:
import hdf5plugin
except ImportError:
hdf5plugin = None


class LambdaImage(FabioImage):
"""FabIO image class for Images for Lambda detector

Lambda detector are medipix based detectors sold by X-Spectrum:
https://x-spectrum.de/products/lambda/
"""

DESCRIPTION = "HDF5 file produces by Lambda"

DEFAULT_EXTENSIONS = ["h5", "hdf5", "nxs"]
DETECTOR_GRP = "/entry/instrument/detector"

def __init__(self, data=None, header=None):
"""
Set up initial values
"""
if not h5py:
raise RuntimeError("fabio.LambdaImage cannot be used without h5py. Please install h5py and restart")

self.dataset = [data]
self._data = None
FabioImage.__init__(self, data, header)
self.h5 = None

@property
def nframes(self):
"""Returns the number of frames contained in this file

:rtype: int
"""
return len(self.dataset)

def get_data(self):
if self._data is None and len(self.dataset) >= self.currentframe:
self._data = self.dataset[self.currentframe]
return self._data

def set_data(self, data, index=None):
"""Set the data for frame index

:param data: numpy array
:param int index: index of the frame (by default: current one)
:raises IndexError: If the frame number is out of the available range.
"""
if index is None:
index = self.currentframe
if isinstance(self.dataset, list):
if index == len(self.dataset):
self.dataset.append(data)
elif index > len(self.dataset):
# pad dataset with None ?
self.dataset += [None] * (1 + index - len(self.dataset))
self.dataset[index] = data
else:
self.dataset[index] = data
if index == self.currentframe:
self._data = data

data = property(get_data, set_data)

def __repr__(self):
if self.h5 is None:
return "%s object at %s" % (self.__class__.__name__, hex(id(self)))
else:
return "Lambda/nexus dataset with %i frames from %s" % (self.nframes, self.h5.filename)

def _readheader(self, infile):
"""
Read and decode the header of an image:

:param infile: Opened python file (can be stringIO or bzipped file)
"""
# list of header key to keep the order (when writing)
self.header = self.check_header()
data_path = posixpath.join(self.DETECTOR_GRP, "data")
description_path = posixpath.join(self.DETECTOR_GRP, "description")
name_path = posixpath.join(self.DETECTOR_GRP, "local_name")
with h5py.File(infile, mode="r") as h5:
if not (data_path in h5 and description_path in h5):
raise NotGoodReader("HDF5's does not look like a Lambda-detector NeXus file.")
description = h5[description_path][()]
if isinstance(description, bytes):
description = description.decode()
else:
description = str(description)
if description != "Lambda":
raise NotGoodReader("Nexus file does not look like it has been written by a Lambda-detector.")
if name_path in h5:
self.header["detector"] = str(h5[name_path][()])
else:
self.header["detector"] = "detector"

def read(self, fname, frame=None):
"""
Try to read image

:param fname: name of the file
:param frame: number of the frame
"""

self.resetvals()
with self._open(fname) as infile:
self._readheader(infile)
# read the image data and declare it

self.dataset = None
# read the image data
self.h5 = h5py.File(fname, mode="r")
data_path = posixpath.join(self.DETECTOR_GRP, "data")
if data_path in self.h5:
ds = self.h5[data_path]
else:
raise NotGoodReader("HDF5's default entry does not exist.")
self.dataset = ds
self._nframes = ds.shape[0]

if frame is not None:
return self.getframe(int(frame))
else:
self.currentframe = 0
self.data = self.dataset[self.currentframe]
self._shape = None
return self

def getframe(self, num):
""" returns the frame numbered 'num' in the stack if applicable"""
if self.nframes > 1:
new_img = None
if (num >= 0) and num < self.nframes:
data = self.dataset[num]
new_img = self.__class__(data=data, header=self.header)
new_img.dataset = self.dataset
new_img.h5 = self.h5
new_img._nframes = self.nframes
new_img.currentframe = num
else:
raise IOError(f"getframe({num}) out of range [0, {self.nframes}[")
else:
new_img = FabioImage.getframe(self, num)
return new_img

def previous(self):
""" returns the previous file in the series as a FabioImage """
new_image = None
if self.nframes == 1:
new_image = FabioImage.previous(self)
else:
new_idx = self.currentframe - 1
new_image = self.getframe(new_idx)
return new_image

def next(self):
"""Returns the next file in the series as a fabioimage

:raise IOError: When there is no next file or image in the series.
"""
new_image = None
if self.nframes == 1:
new_image = FabioImage.next(self)
else:
new_idx = self.currentframe + 1
new_image = self.getframe(new_idx)
return new_image

def close(self):
if self.h5 is not None:
self.h5.close()
self.dataset = None

def write(self, filename):
"""Write a file that looks like one saved by Lambda-detector."""
start_time = nexus.get_isotime()
abs_name = os.path.abspath(filename)
mode = "w"
if hdf5plugin is None:
logger.warning("hdf5plugin is needed for bitshuffle-LZ4 compression, falling back on gzip (slower)")
compression = {"compression":"gzip",
"compression_opts":1}
else:
compression = hdf5plugin.Bitshuffle()

with nexus.Nexus(abs_name, mode=mode) as nxs:
entry = nxs.new_entry(entry="entry",
program_name=None,
force_time=start_time,
force_name=True)
instrument_grp = nxs.new_class(entry, "instrument", class_type="NXinstrument")
detector_grp = nxs.new_class(instrument_grp, "detector", class_type="NXdetector")
detector_grp["description"] = b"Lambda"
detector_grp["local_name"] = self.header.get("detector", "detector").encode()
detector_grp["layout"] = "X".join(str(i) for i in self.shape[-1::-1]).encode()
header_grp = nxs.new_class(detector_grp, "collection", class_type="NXcollection")
acq_grp = nxs.new_class(detector_grp, "acquisition", class_type="NXcollection")

acq_grp["frame_numbers"] = numpy.int32(self.nframes)

shape = (self.nframes,) + self.shape
dataset = detector_grp.create_dataset("data", shape=shape, chunks=(1,) + self.shape, dtype=self.dtype, **compression)
dataset.attrs["interpretation"] = "image"
for i, frame in enumerate(self.dataset):
dataset[i] = frame

# This is for compatibility with old code:
lambdaimage = LambdaImage
1 change: 1 addition & 0 deletions src/fabio/meson.build
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ py.install_sources([
'jpeg2kimage.py',
'jpegimage.py',
'kcdimage.py',
'lambdaimage.py',
'limaimage.py',
'mar345image.py',
'marccdimage.py',
Expand Down
9 changes: 6 additions & 3 deletions src/fabio/openimage.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@
(b"No", "kcd"),
(b"<", "xsd"),
(b"\n\xb8\x03\x00", 'pixi'),
(b"\x89\x48\x44\x46\x0d\x0a\x1a\x0a", "eiger/lima/sparse/hdf5"),
(b"\x89\x48\x44\x46\x0d\x0a\x1a\x0a", "eiger/lima/sparse/hdf5/lambda"),
(b"R-AXIS", 'raxis'),
(b"\x93NUMPY", 'numpy'),
(b"\\$FFF_START", 'fit2d'),
Expand All @@ -118,11 +118,12 @@ def do_magic(byts, filename):
for magic, format_type in MAGIC_NUMBERS:
if byts.startswith(magic):
if "/" in format_type:
if format_type == "eiger/lima/sparse/hdf5":
if format_type == "eiger/lima/sparse/hdf5/lambda":
if "::" in filename:
return "hdf5"
else:
# check if the creator is LIMA
# check if the creator is LIMA or other
lambda_path = "/entry/instrument/detector/description"
import h5py
with h5py.File(filename, "r") as h:
creator = h.attrs.get("creator")
Expand All @@ -144,6 +145,8 @@ def do_magic(byts, filename):
return "lima"
elif str(creator).startswith("pyFAI"):
return "sparse"
elif lambda_path in h and h[lambda_path][()].decode() == "Lambda":
return "lambda"
else:
return "eiger"
elif format_type == "marccd/tif":
Expand Down
4 changes: 3 additions & 1 deletion src/fabio/test/codecs/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
__contact__ = "[email protected]"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "09/02/2023"
__date__ = "02/05/2024"

import sys
import unittest
Expand Down Expand Up @@ -58,6 +58,7 @@ def suite():
from . import test_numpyimage
from . import test_pilatusimage
from . import test_eigerimage
from . import test_lambdaimage
from . import test_hdf5image
from . import test_fit2dimage
from . import test_speimage
Expand Down Expand Up @@ -108,6 +109,7 @@ def suite():
testSuite.addTest(test_hipicimage.suite())
testSuite.addTest(test_binaryimage.suite())
testSuite.addTest(test_xcaliburimage.suite())
testSuite.addTest(test_lambdaimage.suite())
return testSuite


Expand Down
1 change: 1 addition & 0 deletions src/fabio/test/codecs/meson.build
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ py.install_sources(
'test_jpeg2kimage.py',
'test_jpegimage.py',
'test_kcdimage.py',
'test_lambdaimage.py',
'test_limaimage.py',
'test_mar345image.py',
'test_mccdimage.py',
Expand Down
Loading
Loading