-
Notifications
You must be signed in to change notification settings - Fork 659
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
363 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
import numpy as np | ||
import pytest | ||
import torch | ||
|
||
from pytorch_forecasting import TimeSeriesDataSet | ||
from pytorch_forecasting.data import EncoderNormalizer, GroupNormalizer, NaNLabelEncoder | ||
from pytorch_forecasting.data.examples import generate_ar_data, get_stallion_data | ||
|
||
torch.manual_seed(23) | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def gpus(): | ||
if torch.cuda.is_available(): | ||
return [0] | ||
else: | ||
return 0 | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def data_with_covariates(): | ||
data = get_stallion_data() | ||
data["month"] = data.date.dt.month.astype(str) | ||
data["log_volume"] = np.log1p(data.volume) | ||
data["weight"] = 1 + np.sqrt(data.volume) | ||
|
||
data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month | ||
data["time_idx"] -= data["time_idx"].min() | ||
|
||
# convert special days into strings | ||
special_days = [ | ||
"easter_day", | ||
"good_friday", | ||
"new_year", | ||
"christmas", | ||
"labor_day", | ||
"independence_day", | ||
"revolution_day_memorial", | ||
"regional_games", | ||
"fifa_u_17_world_cup", | ||
"football_gold_cup", | ||
"beer_capital", | ||
"music_fest", | ||
] | ||
data[special_days] = ( | ||
data[special_days].apply(lambda x: x.map({0: "", 1: x.name})).astype("category") | ||
) | ||
data = data.astype(dict(industry_volume=float)) | ||
|
||
# select data subset | ||
data = data[lambda x: x.sku.isin(data.sku.unique()[:2])][ | ||
lambda x: x.agency.isin(data.agency.unique()[:2]) | ||
] | ||
|
||
# default target | ||
data["target"] = data["volume"].clip(1e-3, 1.0) | ||
|
||
return data | ||
|
||
|
||
def make_dataloaders(data_with_covariates, **kwargs): | ||
training_cutoff = "2016-09-01" | ||
max_encoder_length = 4 | ||
max_prediction_length = 3 | ||
|
||
kwargs.setdefault("target", "volume") | ||
kwargs.setdefault("group_ids", ["agency", "sku"]) | ||
kwargs.setdefault("add_relative_time_idx", True) | ||
kwargs.setdefault("time_varying_unknown_reals", ["volume"]) | ||
|
||
training = TimeSeriesDataSet( | ||
data_with_covariates[lambda x: x.date < training_cutoff].copy(), | ||
time_idx="time_idx", | ||
max_encoder_length=max_encoder_length, | ||
max_prediction_length=max_prediction_length, | ||
**kwargs, # fixture parametrization | ||
) | ||
|
||
validation = TimeSeriesDataSet.from_dataset( | ||
training, | ||
data_with_covariates.copy(), | ||
min_prediction_idx=training.index.time.max() + 1, | ||
) | ||
train_dataloader = training.to_dataloader(train=True, batch_size=2, num_workers=0) | ||
val_dataloader = validation.to_dataloader(train=False, batch_size=2, num_workers=0) | ||
test_dataloader = validation.to_dataloader(train=False, batch_size=1, num_workers=0) | ||
|
||
return dict(train=train_dataloader, val=val_dataloader, test=test_dataloader) | ||
|
||
|
||
@pytest.fixture( | ||
params=[ | ||
dict(), | ||
dict( | ||
static_categoricals=["agency", "sku"], | ||
static_reals=["avg_population_2017", "avg_yearly_household_income_2017"], | ||
time_varying_known_categoricals=["special_days", "month"], | ||
variable_groups=dict( | ||
special_days=[ | ||
"easter_day", | ||
"good_friday", | ||
"new_year", | ||
"christmas", | ||
"labor_day", | ||
"independence_day", | ||
"revolution_day_memorial", | ||
"regional_games", | ||
"fifa_u_17_world_cup", | ||
"football_gold_cup", | ||
"beer_capital", | ||
"music_fest", | ||
] | ||
), | ||
time_varying_known_reals=[ | ||
"time_idx", | ||
"price_regular", | ||
"price_actual", | ||
"discount", | ||
"discount_in_percent", | ||
], | ||
time_varying_unknown_categoricals=[], | ||
time_varying_unknown_reals=[ | ||
"volume", | ||
"log_volume", | ||
"industry_volume", | ||
"soda_volume", | ||
"avg_max_temp", | ||
], | ||
constant_fill_strategy={"volume": 0}, | ||
categorical_encoders={"sku": NaNLabelEncoder(add_nan=True)}, | ||
), | ||
dict(static_categoricals=["agency", "sku"]), | ||
dict(randomize_length=True, min_encoder_length=2), | ||
dict(target_normalizer=EncoderNormalizer(), min_encoder_length=2), | ||
dict(target_normalizer=GroupNormalizer(transformation="log1p")), | ||
dict( | ||
target_normalizer=GroupNormalizer( | ||
groups=["agency", "sku"], transformation="softplus", center=False | ||
) | ||
), | ||
dict(target="agency"), | ||
# test multiple targets | ||
dict(target=["industry_volume", "volume"]), | ||
dict(target=["agency", "volume"]), | ||
dict( | ||
target=["agency", "volume"], min_encoder_length=1, min_prediction_length=1 | ||
), | ||
dict(target=["agency", "volume"], weight="volume"), | ||
# test weights | ||
dict(target="volume", weight="volume"), | ||
], | ||
scope="session", | ||
) | ||
def multiple_dataloaders_with_covariates(data_with_covariates, request): | ||
return make_dataloaders(data_with_covariates, **request.param) | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def dataloaders_with_different_encoder_decoder_length(data_with_covariates): | ||
return make_dataloaders( | ||
data_with_covariates.copy(), | ||
target="target", | ||
time_varying_known_categoricals=["special_days", "month"], | ||
variable_groups=dict( | ||
special_days=[ | ||
"easter_day", | ||
"good_friday", | ||
"new_year", | ||
"christmas", | ||
"labor_day", | ||
"independence_day", | ||
"revolution_day_memorial", | ||
"regional_games", | ||
"fifa_u_17_world_cup", | ||
"football_gold_cup", | ||
"beer_capital", | ||
"music_fest", | ||
] | ||
), | ||
time_varying_known_reals=[ | ||
"time_idx", | ||
"price_regular", | ||
"price_actual", | ||
"discount", | ||
"discount_in_percent", | ||
], | ||
time_varying_unknown_categoricals=[], | ||
time_varying_unknown_reals=[ | ||
"target", | ||
"volume", | ||
"log_volume", | ||
"industry_volume", | ||
"soda_volume", | ||
"avg_max_temp", | ||
], | ||
static_categoricals=["agency"], | ||
add_relative_time_idx=False, | ||
target_normalizer=GroupNormalizer(groups=["agency", "sku"], center=False), | ||
) | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def dataloaders_with_covariates(data_with_covariates): | ||
return make_dataloaders( | ||
data_with_covariates.copy(), | ||
target="target", | ||
time_varying_known_reals=["discount"], | ||
time_varying_unknown_reals=["target"], | ||
static_categoricals=["agency"], | ||
add_relative_time_idx=False, | ||
target_normalizer=GroupNormalizer(groups=["agency", "sku"], center=False), | ||
) | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def dataloaders_multi_target(data_with_covariates): | ||
return make_dataloaders( | ||
data_with_covariates.copy(), | ||
time_varying_unknown_reals=["target", "discount"], | ||
target=["target", "discount"], | ||
add_relative_time_idx=False, | ||
) | ||
|
||
|
||
@pytest.fixture(scope="session") | ||
def dataloaders_fixed_window_without_covariates(): | ||
data = generate_ar_data(seasonality=10.0, timesteps=50, n_series=2) | ||
validation = data.series.iloc[:2] | ||
|
||
max_encoder_length = 30 | ||
max_prediction_length = 10 | ||
|
||
training = TimeSeriesDataSet( | ||
data[lambda x: ~x.series.isin(validation)], | ||
time_idx="time_idx", | ||
target="value", | ||
categorical_encoders={"series": NaNLabelEncoder().fit(data.series)}, | ||
group_ids=["series"], | ||
static_categoricals=[], | ||
max_encoder_length=max_encoder_length, | ||
max_prediction_length=max_prediction_length, | ||
time_varying_unknown_reals=["value"], | ||
target_normalizer=EncoderNormalizer(), | ||
) | ||
|
||
validation = TimeSeriesDataSet.from_dataset( | ||
training, | ||
data[lambda x: x.series.isin(validation)], | ||
stop_randomization=True, | ||
) | ||
batch_size = 2 | ||
train_dataloader = training.to_dataloader( | ||
train=True, batch_size=batch_size, num_workers=0 | ||
) | ||
val_dataloader = validation.to_dataloader( | ||
train=False, batch_size=batch_size, num_workers=0 | ||
) | ||
test_dataloader = validation.to_dataloader( | ||
train=False, batch_size=batch_size, num_workers=0 | ||
) | ||
|
||
return dict(train=train_dataloader, val=val_dataloader, test=test_dataloader) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters