Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement hierarchical clustering #146

Draft
wants to merge 2 commits into
base: development
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions src/cluster/hierarchical.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
/// # Hierarchical clustering
///
/// Implement hierarchical clustering methods:
/// * Agglomerative clustering (current)
/// * Bisecting K-Means (future)
/// * Fastcluster (future)
///

/*
class AgglomerativeClustering():
"""
Parameters
----------
n_clusters : int or None, default=2
The number of clusters to find. It must be ``None`` if
``distance_threshold`` is not ``None``.
affinity : str or callable, default='euclidean'
If linkage is "ward", only "euclidean" is accepted.
linkage : {'ward',}, default='ward'
Which linkage criterion to use. The linkage criterion determines which
distance to use between sets of observation. The algorithm will merge
the pairs of cluster that minimize this criterion.
- 'ward' minimizes the variance of the clusters being merged.
compute_distances : bool, default=False
Computes distances between clusters even if `distance_threshold` is not
used. This can be used to make dendrogram visualization, but introduces
a computational and memory overhead.
"""

def fit(X):
# compute tree
# <https://github.com/scikit-learn/scikit-learn/blob/02ebf9e68fe1fc7687d9e1047b9e465ae0fd945e/sklearn/cluster/_agglomerative.py#L172>
parents, childern = ward_tree(X, ....)
# compute clusters
# <https://github.com/scikit-learn/scikit-learn/blob/70c495250fea7fa3c8c1a4631e6ddcddc9f22451/sklearn/cluster/_hierarchical_fast.pyx#L98>
labels = _hierarchical.hc_get_heads(parents)
# assign cluster numbers
self.labels_ = np.searchsorted(np.unique(labels), labels)

*/

// implement ward tree
// use scipy.cluster.hierarchy.ward
// <https://github.com/scipy/scipy/blob/main/scipy/cluster/hierarchy.py#L738>
// use linkage
// <https://github.com/scipy/scipy/blob/main/scipy/cluster/hierarchy.py#L837>
// use nn_chain
// <https://github.com/scipy/scipy/blob/main/scipy/cluster/_hierarchy.pyx#L906>

// implement hc_get_heads


mod tests {
// >>> from sklearn.cluster import AgglomerativeClustering
// >>> import numpy as np
// >>> X = np.array([[1, 2], [1, 4], [1, 0],
// ... [4, 2], [4, 4], [4, 0]])
// >>> clustering = AgglomerativeClustering().fit(X)
// >>> clustering
// AgglomerativeClustering()
// >>> clustering.labels_
// array([1, 1, 1, 0, 0, 0])
}