Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding racinal root finder function #525

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 153 additions & 0 deletions racinal_root_finder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
import numpy as np
import matplotlib.pyplot as plt

"""
This program finds the rational roots of a polynomial with integer coefficients using the Rational Root Theorem.
The user can input a polynomial by selecting their language (French or English), and the program will:
1. Determine the divisors of the constant term and the leading coefficient.
2. Generate candidates (p/q) to test as potential rational roots.
3. Evaluate whether each candidate is a root of the polynomial.
4. Return, display and plot the rational roots (if any).

Key features:
- Multilingual support (French/English).
- User input validation.
- Accurate root calculation using `numpy`.
- Error handling for invalid polynomials.
"""

"""
Ce programme permet de trouver les racines rationnelles d'un polynôme à coefficients entiers en utilisant le théorème des racines rationnelles.
L'utilisateur peut saisir un polynôme en choisissant sa langue (français ou anglais), après quoi le programme :
1. Vérifie les diviseurs du terme constant et du coefficient dominant.
2. Génère les candidats (p/q) à tester en tant que racines rationnelles potentielles.
3. Évalue si chaque candidat est une racine du polynôme.
4. Retourne, affiche et représente les racines rationnelles (s'il y en a).

Fonctionnalités :
- Gestion multilingue (français/anglais).
- Validation des entrées utilisateur.
- Calcul précis des racines avec `numpy`.
- Gestion des erreurs pour les polynômes non valides.
"""

def find_divisors(n):
divisors = []
for i in range(1, abs(n) + 1):
if n % i == 0:
divisors.append(i)
divisors.append(-i)
return divisors

def find_rational_roots(coeffs, lang):
if not coeffs or coeffs[0] == 0:
if lang == 2:
raise ValueError("Le polynôme doit avoir un coefficient dominant non nul.")
else:
raise ValueError("The polynomial must have a non-zero leading coefficient.")

a0 = coeffs[-1]
an = coeffs[0]
list_p = find_divisors(a0)
list_q = find_divisors(an)

candidates = set()

for p in list_p:
for q in list_q:
if q != 0:
candidates.add(p/q)

racinals = []
for r in candidates:
if np.isclose(np.polyval(coeffs, r), 0):
racinals.append(r)

if lang == 2:
if racinals:
print("\nRacines rationnelles trouvées :", racinals)
else:
print("\nAucune racine rationnelle trouvée.")

else:
if racinals:
print("\nRational roots found:", racinals)
else:
print("\nNo rational roots found.")

plot_polynomial(coeffs, racinals, lang)
return racinals

def plot_polynomial(coeffs, roots, lang):
x = np.linspace(-10, 10, 500)
y = np.polyval(coeffs, x)

plt.figure(figsize=(10, 6))
plt.plot(x, y, label='Polynom', color='blue')
plt.axhline(0, color='black', linewidth=0.8, linestyle='--')
if roots:
plt.scatter(roots, [0] * len(roots), color='red', label="Racines", zorder=5)
plt.title("Représentation du polynôme" if lang == 2 else "Polynomial Plot")
plt.xlabel("x")
plt.ylabel("y")
plt.grid(True)
plt.legend()
plt.show()

def lang_selector():
lang = int(input("""Tape :
1: English
2: French
"""))
if lang == 1:
return request_en()
elif lang == 2:
return request_fr()
else:
return lang_selector()

def request_fr(lang=2):
coeffs = []
deg = input('\nQuel est le degré de votre polynome : ')
try:
deg = int(deg)
if deg < 0:
print('Le degré doit être positif')
return request_fr()
elif deg == 0:
coeffs = [1]
return coeffs, deg
else:
print("\nVeuillez entrer les coeffs un par un dans l'ordre : ")
for i in range(int(deg)+1):
coeffs.append(int(input(f"coefficient {i + 1} (x^{deg - i}): ")))
print("Coéfficients :", coeffs)

return find_rational_roots(coeffs, lang)

except ValueError:
print('Veuillez entrer un nombre entier')

def request_en(lang=1):
coeffs = []
deg = input('\nWhat is the degree of your polynomial: ')
try:
deg = int(deg)
if deg < 0:
print('The degree must be positive')
return request_en()
elif deg == 0:
coeffs = [1]
return coeffs, deg
else:
print("\nPlease enter the coefficients one by one in order: ")
for i in range(int(deg)+1):
coeffs.append(int(input(f"coefficient {i + 1} (x^{deg - i}): ")))
print("Coefficients :", coeffs)

return find_rational_roots(coeffs, lang)

except ValueError:
print('Please enter an integer')

lang_selector()