@@ -85,7 +85,7 @@ object SVMKernel {
85
85
(i, j) => if (i >= j) kernelIndex((i,j)) else kernelIndex((j,i))
86
86
}
87
87
88
- println(" Dimensions: " + kernel.rows + " x " + kernel.cols)
88
+ // println(" Dimensions: " + kernel.rows + " x " + kernel.cols)
89
89
new SVMKernelMatrix (kernel, length)
90
90
}
91
91
@@ -98,7 +98,7 @@ object SVMKernel {
98
98
.map(s => ((s.head._2, s.last._2), eval(s.head._1, s.last._1)))
99
99
.toMap
100
100
101
- println(" Dimensions: " + data1.length + " x " + data2.length)
101
+ // println(" Dimensions: " + data1.length + " x " + data2.length)
102
102
DenseMatrix .tabulate[Double ](data1.length, data2.length){
103
103
(i, j) => kernelIndex((i,j))
104
104
}
@@ -112,8 +112,8 @@ object SVMKernel {
112
112
Map [String , DenseMatrix [Double ]] = {
113
113
114
114
val (rows, cols) = (data1.length, data1.length)
115
- println(" Constructing Kernel/Grad Matrices" )
116
- println(" Dimensions: " + rows + " x " + cols)
115
+ // println("Constructing Kernel/Grad Matrices")
116
+ // println(" Dimensions: " + rows + " x " + cols)
117
117
118
118
val keys = Seq (" kernel-matrix" ) ++ hyper_parameters
119
119
@@ -125,8 +125,8 @@ object SVMKernel {
125
125
else (k, ((s.head._2, s.last._2), evalGrad(k)(s.head._1, s.last._1))))
126
126
}).groupBy(_._1).map(cl => {
127
127
128
- if (cl._1 == " kernel-matrix" ) println(" Constructing Kernel Matrix" )
129
- else println(" Constructing Grad Matrix for: " + cl._1)
128
+ // if (cl._1 == "kernel-matrix") // println("Constructing Kernel Matrix")
129
+ // else // println("Constructing Grad Matrix for: "+cl._1)
130
130
131
131
val kernelIndex = cl._2.map(_._2).toMap
132
132
@@ -152,8 +152,8 @@ object SVMKernel {
152
152
Map [String , DenseMatrix [Double ]] = {
153
153
154
154
val (rows, cols) = (data1.length, data2.length)
155
- println(" Constructing Kernel/Grad Matrices" )
156
- println(" Dimensions: " + rows + " x " + cols)
155
+ // println("Constructing Kernel/Grad Matrices")
156
+ // println(" Dimensions: " + rows + " x " + cols)
157
157
158
158
val keys = Seq (" kernel-matrix" ) ++ hyper_parameters
159
159
@@ -164,8 +164,8 @@ object SVMKernel {
164
164
else (k, ((s.head._2, s.last._2), evalGrad(k)(s.head._1, s.last._1))))
165
165
}).groupBy(_._1).map(cl => {
166
166
167
- if (cl._1 == " kernel-matrix" ) println(" Constructing Kernel Matrix" )
168
- else println(" Constructing Grad Matrix for: " + cl._1)
167
+ // if (cl._1 == "kernel-matrix") // println("Constructing Kernel Matrix")
168
+ // else // println("Constructing Grad Matrix for: "+cl._1)
169
169
170
170
val kernelIndex = cl._2.map(_._2).toMap
171
171
@@ -187,25 +187,25 @@ object SVMKernel {
187
187
188
188
val (rows, cols) = (length, length)
189
189
190
- println(" Constructing partitioned kernel matrix." )
191
- println(" Dimension: " + rows + " x " + cols)
190
+ // println("Constructing partitioned kernel matrix.")
191
+ // println("Dimension: " + rows + " x " + cols)
192
192
193
193
val (num_R_blocks, num_C_blocks) = (
194
194
math.ceil(rows.toDouble/ numElementsPerRowBlock).toLong,
195
195
math.ceil(cols.toDouble/ numElementsPerColBlock).toLong)
196
196
197
- println(" Blocks: " + num_R_blocks + " x " + num_C_blocks)
197
+ // println("Blocks: " + num_R_blocks + " x " + num_C_blocks)
198
198
val partitionedData = data.grouped(numElementsPerRowBlock).zipWithIndex.toStream
199
199
200
- println(" ~~~~~~~~~~~~~~~~~~~~~~~" )
201
- println(" Constructing Partitions" )
200
+ // println("~~~~~~~~~~~~~~~~~~~~~~~")
201
+ // println("Constructing Partitions")
202
202
new PartitionedPSDMatrix (
203
203
utils.combine(Seq (partitionedData, partitionedData))
204
204
.filter(c => c.head._2 >= c.last._2)
205
205
.toStream.map(c => {
206
206
207
207
val partitionIndex = (c.head._2.toLong, c.last._2.toLong)
208
- println(" :- Partition: " + partitionIndex)
208
+ // println(":- Partition: "+partitionIndex)
209
209
210
210
val matrix =
211
211
if (partitionIndex._1 == partitionIndex._2)
@@ -226,22 +226,22 @@ object SVMKernel {
226
226
227
227
val (rows, cols) = (data1.length, data2.length)
228
228
229
- println(" Constructing cross partitioned kernel matrix." )
230
- println(" Dimension: " + rows + " x " + cols)
229
+ // println("Constructing cross partitioned kernel matrix.")
230
+ // println("Dimension: " + rows + " x " + cols)
231
231
232
232
val (num_R_blocks, num_C_blocks) = (
233
233
math.ceil(rows.toDouble/ numElementsPerRowBlock).toLong,
234
234
math.ceil(cols.toDouble/ numElementsPerColBlock).toLong)
235
235
236
- println(" Blocks: " + num_R_blocks + " x " + num_C_blocks)
237
- println(" ~~~~~~~~~~~~~~~~~~~~~~~" )
238
- println(" Constructing Partitions" )
236
+ // println("Blocks: " + num_R_blocks + " x " + num_C_blocks)
237
+ // println("~~~~~~~~~~~~~~~~~~~~~~~")
238
+ // println("Constructing Partitions")
239
239
new PartitionedMatrix (utils.combine(Seq (
240
240
data1.grouped(numElementsPerRowBlock).zipWithIndex.toStream,
241
241
data2.grouped(numElementsPerColBlock).zipWithIndex.toStream)
242
242
).toStream.map(c => {
243
243
val partitionIndex = (c.head._2.toLong, c.last._2.toLong)
244
- println(" :- Partition: " + partitionIndex)
244
+ // println(":- Partition: "+partitionIndex)
245
245
val matrix = crossKernelMatrix(c.head._1, c.last._1, eval)
246
246
(partitionIndex, matrix)
247
247
}), rows, cols, num_R_blocks, num_C_blocks)
@@ -258,18 +258,18 @@ object SVMKernel {
258
258
259
259
val (rows, cols) = (length, length)
260
260
261
- println(" Constructing partitioned kernel matrix and its derivatives" )
262
- println(" Dimension: " + rows + " x " + cols)
261
+ // println("Constructing partitioned kernel matrix and its derivatives")
262
+ // println("Dimension: " + rows + " x " + cols)
263
263
264
264
val (num_R_blocks, num_C_blocks) = (
265
265
math.ceil(rows.toDouble/ numElementsPerRowBlock).toLong,
266
266
math.ceil(cols.toDouble/ numElementsPerColBlock).toLong)
267
267
268
- println(" Blocks: " + num_R_blocks + " x " + num_C_blocks)
268
+ // println("Blocks: " + num_R_blocks + " x " + num_C_blocks)
269
269
val partitionedData = data.grouped(numElementsPerRowBlock).zipWithIndex.toStream
270
270
271
- println(" ~~~~~~~~~~~~~~~~~~~~~~~" )
272
- println(" Constructing Partitions" )
271
+ // println("~~~~~~~~~~~~~~~~~~~~~~~")
272
+ // println("Constructing Partitions")
273
273
274
274
275
275
// Build the result using flatMap - reduce
@@ -278,7 +278,7 @@ object SVMKernel {
278
278
.toStream.flatMap(c => {
279
279
val partitionIndex = (c.head._2.toLong, c.last._2.toLong)
280
280
print(" \n " )
281
- println(" :- Partition: " + partitionIndex)
281
+ // println(":- Partition: "+partitionIndex)
282
282
283
283
if (partitionIndex._1 == partitionIndex._2) {
284
284
SVMKernel .buildKernelGradMatrix(
0 commit comments