Skip to content

Commit

Permalink
Put cat, hom, string dia together
Browse files Browse the repository at this point in the history
  • Loading branch information
utensil committed Jun 16, 2024
1 parent f095016 commit f207cab
Show file tree
Hide file tree
Showing 6 changed files with 104 additions and 66 deletions.
52 changes: 2 additions & 50 deletions trees/tt-0001.tree
Original file line number Diff line number Diff line change
Expand Up @@ -10,54 +10,6 @@

\date{2024-05-28}

\p{These are my notes on:}
\transclude{tt-0005}

\ul{
\li{Category theory}
\li{Topos theory}
\li{Type theory}
\li{Sheaf theory}
\li{Differential sheaves}
\li{SDG (Synthetic Differential Geometry)}
}

\p{The primary reference for these notes are:}

\ul{
\li{\citek{kostecki2011introduction}} for a clean introduction from category theory to topos theory
\li{\citek{kostecki2009differential}} for its introduction to SDG
\li{\citek{mallios2015differential}} for its introduction to Differential sheaves
\li{\citek{rosiak2022sheaf}} for its examples of sheaves
\li{\citek{zhang2021type}} for a friendly introduction to type theory using the language of category theory
\li{\citek{chen2016infinitely}} for various preliminaries on category theory
\li{\citek{fauser2004grade}} for the use of Kuperberg graphical calculi over commutative diagrams
}

\p{Scattered notes:}

\scope{
% \put\transclude/toc{true}
% \put\transclude/numbered{true}
% \put\transclude/metadata{true}
% \put\transclude/expanded{true}
\query{
\query/and{
\query/tag{draft}
\query/tag{tt}
% \query/or{
% \query/taxon{definition}
% \query/taxon{theorem}
% \query/taxon{lemma}
% \query/taxon{construction}
% \query/taxon{observation}
% \query/taxon{convention}
% \query/taxon{corollary}
% \query/taxon{axiom}
% \query/taxon{example}
% \query/taxon{exercise}
% \query/taxon{proof}
% \query/taxon{remark}
% }
}
}
}
\transclude{tt-0006}
22 changes: 13 additions & 9 deletions trees/tt-0002.tree
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
\import{tt-macros}
% clifford hopf spin tt math draft
\tag{tt}
\tag{draft}

% definition theorem lemma construction observation
% convention corollary axiom example exercise proof
Expand All @@ -12,17 +11,22 @@
\p{
A \newvocab{category} #{\C} consists of:
\ul{
\li{\newvocab{objects}: #{X, Y, \dots}, whose collection is denoted #{\Ob(\C)}}
\li{\newvocab{arrows} or \newvocab{morphisms}: #{f, g, \dots}, whose collection is denoted #{\Arr(\C)} or #{\Mor(\C)}}
\li{a pair of operations: for each arrow #{f},
\li{\newvocab{objects}: #{X, Y, \dots \in \Ob(\C)}}
\li{\newvocab{arrows} or \newvocab{morphisms}: #{f, g, \dots \in \Arr(\C)} or #{\Mor(\C)}}
}

(where #{\Ob(\C)} and #{\Arr(\C)} are [class](https://en.wikipedia.org/wiki/Class_(set_theory))es, i.e. a collection of sets), and

\ul{

\li{a pair of operations: \newvocab{codomain} #{\cod} and \newvocab{domain} #{\dom} for each arrow #{f}}
\ul{
\li{\vocab{codomain} #{\cod : \Arr(\C) \to \Ob(\C), f \mapsto X},}
\li{\vocab{domain} #{\dom : \Arr(\C) \to \Ob(\C), f \mapsto Y},}
}
denoted by #{f : X \to Y} or #{\arr{X}{f}{Y}},
\li{ #{\cod : \Arr(\C) \to \Ob(\C), f \mapsto X},}
\li{ #{\dom : \Arr(\C) \to \Ob(\C), f \mapsto Y},}
}
}
such that,

denoted by #{f : X \to Y} or #{\arr{X}{f}{Y}}, satisfying,

\ol{
\li{(associativity of composition) there exists a \newvocab{composite arrow} of any pair of arrows #{f} and #{g}, denoted by #{g \circ f}, makes the diagrams
Expand Down
11 changes: 7 additions & 4 deletions trees/tt-0003.tree
Original file line number Diff line number Diff line change
@@ -1,14 +1,17 @@
\import{tt-macros}
% clifford hopf spin tt math draft
\tag{tt}
\tag{draft}
\parent{tt-0002}
% \parent{tt-0002}

% definition theorem lemma construction observation
% convention corollary axiom example exercise proof
% discussion remark notation
\taxon{notation}

\p{In most literatures (e.g. \cite{chen2016infinitely}), objects in #{\C} are denoted like #{X, Y \in \Ob(\C)}, the set of these arrows are denoted by #{\Hom_\C(X, Y)}, thus an arrow from #{X} to #{Y} is #{f \in \Hom_\C(X, Y)}. }
\title{Hom-class}

\p{\cite{zhang2021type} simply writes the above as #{X \in \C} and #{f \in \C(X, Y)}, respectively, which is quite friendly, as long as one doesn't use the set theory mindset.}
\p{In most literatures (e.g. \cite{chen2016infinitely}), for objects #{X, Y \in \Ob(\C)}, #{\Hom_\C(X, Y)} is called the hom-class between #{X} and #{Y} (not [hom-set](https://en.wikipedia.org/wiki/Morphism#Hom-set) as the collection of morphisms is not neccessarily a set), thus an arrow from #{X} to #{Y} is written as #{f \in \Hom_\C(X, Y)}.}

\p{"#{\Hom}" are the first few letters of the word "homomorphism", since a morphism in category theory is a generalization of [homomorphism](https://en.wikipedia.org/wiki/Homomorphism) between algebraic structures.}

\p{\cite{zhang2021type} simply writes the above as #{X \in \C} and #{f \in \C(X, Y)}, respectively, which is quite friendly (at least the latter), as long as one doesn't use the set theory mindset. }
7 changes: 4 additions & 3 deletions trees/tt-0004.tree
Original file line number Diff line number Diff line change
@@ -1,19 +1,20 @@
\import{tt-macros}
% clifford hopf spin tt math draft
\tag{draft}
\tag{tt}

% definition theorem lemma construction observation
% convention corollary axiom example exercise proof
% discussion remark notation
\taxon{notation}

\title{string diagrams}

\p{
Later, when we have learned about functors and natural transformations, we will see that:
Later, when we have learned about functors and natural transformations, we will see that, in \vocab{string diagram}\citek{marsden2014category}:

\ol{
\li{
A \vocab{category} #{\C} is represented as a colored region in \vocab{string diagram}\citek{marsden2014category}:
A \vocab{category} #{\C} is represented as a colored region:

\tikz{
\begin{tikzpicture}[scale=0.5]
Expand Down
16 changes: 16 additions & 0 deletions trees/tt-0005.tree
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
\import{tt-macros}
% clifford hopf spin tt math draft
\tag{tt}

% definition theorem lemma construction observation
% convention corollary axiom example exercise proof
% discussion remark notation
% \taxon{}

\title{Categories}

\transclude{tt-0002}

\transclude{tt-0003}

\transclude{tt-0004}
62 changes: 62 additions & 0 deletions trees/tt-0006.tree
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
\import{tt-macros}
% clifford hopf spin tt math draft
\tag{tt}

% definition theorem lemma construction observation
% convention corollary axiom example exercise proof
% discussion remark notation
% \taxon{}

\title{Appendix}

\p{These are my notes on:}

\ul{
\li{Category theory}
\li{Topos theory}
\li{Type theory}
\li{Sheaf theory}
\li{Differential sheaves}
\li{SDG (Synthetic Differential Geometry)}
}

\p{The primary reference for these notes are:}

\ul{
\li{\citek{kostecki2011introduction}} for a clean introduction from category theory to topos theory
\li{\citek{kostecki2009differential}} for its introduction to SDG
\li{\citek{mallios2015differential}} for its introduction to Differential sheaves
\li{\citek{rosiak2022sheaf}} for its examples of sheaves
\li{\citek{zhang2021type}} for a friendly introduction to type theory using the language of category theory
\li{\citek{chen2016infinitely}} for various preliminaries on category theory
\li{\citek{fauser2004grade}} for the use of Kuperberg graphical calculi over commutative diagrams
}

\p{Scattered notes:}

\scope{
% \put\transclude/toc{true}
% \put\transclude/numbered{true}
% \put\transclude/metadata{true}
% \put\transclude/expanded{true}
\query{
\query/and{
\query/tag{draft}
\query/tag{tt}
% \query/or{
% \query/taxon{definition}
% \query/taxon{theorem}
% \query/taxon{lemma}
% \query/taxon{construction}
% \query/taxon{observation}
% \query/taxon{convention}
% \query/taxon{corollary}
% \query/taxon{axiom}
% \query/taxon{example}
% \query/taxon{exercise}
% \query/taxon{proof}
% \query/taxon{remark}
% }
}
}
}

0 comments on commit f207cab

Please sign in to comment.