Skip to content

Update Status of this document for CR Snapshot #532

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 13, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions index.bs
Original file line number Diff line number Diff line change
Expand Up @@ -22,11 +22,9 @@ Markup Shorthands: css no
Logo: https://webmachinelearning.github.io/webmachinelearning-logo.png
Deadline: 2023-10-01
Status Text: <p>
Further implementation experience and user feedback is being gathered for the
<code>MLCommandEncoder</code> interface that proposes to enable more efficient WebGPU
integration. A proposal to
<a href="https://github.com/webmachinelearning/webnn/pull/322">simplify
MLContext creation</a> is being discussed. This document is maintained and
Since the <a href="https://www.w3.org/TR/2023/CR-webnn-20230330/">initial Candidate Recommendation Snapshot</a> the Working Group has gathered further <a href="https://webmachinelearning.github.io/webnn-status/">implementation experience</a> and added new operations and data types needed for well-known <a href="https://github.com/webmachinelearning/webnn/issues/375">transformers to support generative AI use cases</a>. In addition, informed by this implementation experience, the group removed <code>MLCommandEncoder</code>, support for synchronous execution, and higher-level operations that can be expressed in terms of lower-level primitives in a performant manner. The group has also updated the specification to use modern authoring conventions to improve interoperability and precision of normative definitions.
The group is developing a new feature, a <a href="https://github.com/webmachinelearning/webnn/issues/482">backend-agnostic storage type</a>, to improve performance and interoperability between the WebNN, WebGPU APIs and purpose-built hardware for ML and expects to republish this document as a Candidate Recommendation Snapshot when ready for implementation.
This document is maintained and
updated at any time. Some parts of this document are work in progress and
further improvements are expected to be reflected in revised Candidate
Recommendation Drafts and Snaphots.
Expand Down