-
Notifications
You must be signed in to change notification settings - Fork 79
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
v1.0.1, fixes for R-devel with Matrix 1.6-2
- Loading branch information
Showing
14 changed files
with
215 additions
and
254 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,113 +1,113 @@ | ||
# Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||
|
||
RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) { | ||
.Call('_rliger_RunModularityClusteringCpp', PACKAGE = 'rliger', SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) | ||
} | ||
|
||
scaleNotCenterFast <- function(x) { | ||
.Call('_rliger_scaleNotCenterFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowMeansFast <- function(x) { | ||
.Call('_rliger_rowMeansFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowVarsFast <- function(x, means) { | ||
.Call('_rliger_rowVarsFast', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
sumSquaredDeviations <- function(x, means) { | ||
.Call('_rliger_sumSquaredDeviations', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
cpp_sumGroups_dgc <- function(x, p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc', PACKAGE = 'rliger', x, p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dgc_T <- function(x, p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc_T', PACKAGE = 'rliger', x, p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc <- function(p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc', PACKAGE = 'rliger', p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_in_place_rank_mean <- function(v_temp, idx_begin, idx_end) { | ||
.Call('_rliger_cpp_in_place_rank_mean', PACKAGE = 'rliger', v_temp, idx_begin, idx_end) | ||
} | ||
|
||
cpp_rank_matrix_dgc <- function(x, p, nrow, ncol) { | ||
.Call('_rliger_cpp_rank_matrix_dgc', PACKAGE = 'rliger', x, p, nrow, ncol) | ||
} | ||
|
||
cpp_rank_matrix_dense <- function(X) { | ||
.Call('_rliger_cpp_rank_matrix_dense', PACKAGE = 'rliger', X) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc_T <- function(p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc_T', PACKAGE = 'rliger', p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
#' Fast calculation of feature count matrix | ||
#' | ||
#' @param bedmat A feature count list generated by bedmap | ||
#' @param barcodes A list of barcodes | ||
#' | ||
#' @return A feature count matrix with features as rows and barcodes as | ||
#' columns | ||
#' @export | ||
#' @examples | ||
#' \dontrun{ | ||
#' gene.counts <- makeFeatureMatrix(genes.bc, barcodes) | ||
#' promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes) | ||
#' samnple <- gene.counts + promoter.counts | ||
#' } | ||
makeFeatureMatrix <- function(bedmat, barcodes) { | ||
.Call('_rliger_makeFeatureMatrix', PACKAGE = 'rliger', bedmat, barcodes) | ||
} | ||
|
||
cluster_vote <- function(nn_ranked, clusts) { | ||
.Call('_rliger_cluster_vote', PACKAGE = 'rliger', nn_ranked, clusts) | ||
} | ||
|
||
scale_columns_fast <- function(mat, scale = TRUE, center = TRUE) { | ||
.Call('_rliger_scale_columns_fast', PACKAGE = 'rliger', mat, scale, center) | ||
} | ||
|
||
max_factor <- function(H, dims_use, center_cols = FALSE) { | ||
.Call('_rliger_max_factor', PACKAGE = 'rliger', H, dims_use, center_cols) | ||
} | ||
|
||
solveNNLS <- function(C, B) { | ||
.Call('_rliger_solveNNLS', PACKAGE = 'rliger', C, B) | ||
} | ||
|
||
ComputeSNN <- function(nn_ranked, prune) { | ||
.Call('_rliger_ComputeSNN', PACKAGE = 'rliger', nn_ranked, prune) | ||
} | ||
|
||
WriteEdgeFile <- function(snn, filename, display_progress) { | ||
invisible(.Call('_rliger_WriteEdgeFile', PACKAGE = 'rliger', snn, filename, display_progress)) | ||
} | ||
|
||
DirectSNNToFile <- function(nn_ranked, prune, display_progress, filename) { | ||
.Call('_rliger_DirectSNNToFile', PACKAGE = 'rliger', nn_ranked, prune, display_progress, filename) | ||
} | ||
|
||
# Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||
|
||
RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) { | ||
.Call('_rliger_RunModularityClusteringCpp', PACKAGE = 'rliger', SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) | ||
} | ||
|
||
scaleNotCenterFast <- function(x) { | ||
.Call('_rliger_scaleNotCenterFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowMeansFast <- function(x) { | ||
.Call('_rliger_rowMeansFast', PACKAGE = 'rliger', x) | ||
} | ||
|
||
rowVarsFast <- function(x, means) { | ||
.Call('_rliger_rowVarsFast', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
sumSquaredDeviations <- function(x, means) { | ||
.Call('_rliger_sumSquaredDeviations', PACKAGE = 'rliger', x, means) | ||
} | ||
|
||
cpp_sumGroups_dgc <- function(x, p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc', PACKAGE = 'rliger', x, p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dgc_T <- function(x, p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dgc_T', PACKAGE = 'rliger', x, p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_sumGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_sumGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dense_T <- function(X, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc <- function(p, i, ncol, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc', PACKAGE = 'rliger', p, i, ncol, groups, ngroups) | ||
} | ||
|
||
cpp_in_place_rank_mean <- function(v_temp, idx_begin, idx_end) { | ||
.Call('_rliger_cpp_in_place_rank_mean', PACKAGE = 'rliger', v_temp, idx_begin, idx_end) | ||
} | ||
|
||
cpp_rank_matrix_dgc <- function(x, p, nrow, ncol) { | ||
.Call('_rliger_cpp_rank_matrix_dgc', PACKAGE = 'rliger', x, p, nrow, ncol) | ||
} | ||
|
||
cpp_rank_matrix_dense <- function(X) { | ||
.Call('_rliger_cpp_rank_matrix_dense', PACKAGE = 'rliger', X) | ||
} | ||
|
||
cpp_nnzeroGroups_dgc_T <- function(p, i, ncol, nrow, groups, ngroups) { | ||
.Call('_rliger_cpp_nnzeroGroups_dgc_T', PACKAGE = 'rliger', p, i, ncol, nrow, groups, ngroups) | ||
} | ||
|
||
#' Fast calculation of feature count matrix | ||
#' | ||
#' @param bedmat A feature count list generated by bedmap | ||
#' @param barcodes A list of barcodes | ||
#' | ||
#' @return A feature count matrix with features as rows and barcodes as | ||
#' columns | ||
#' @export | ||
#' @examples | ||
#' \dontrun{ | ||
#' gene.counts <- makeFeatureMatrix(genes.bc, barcodes) | ||
#' promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes) | ||
#' samnple <- gene.counts + promoter.counts | ||
#' } | ||
makeFeatureMatrix <- function(bedmat, barcodes) { | ||
.Call('_rliger_makeFeatureMatrix', PACKAGE = 'rliger', bedmat, barcodes) | ||
} | ||
|
||
cluster_vote <- function(nn_ranked, clusts) { | ||
.Call('_rliger_cluster_vote', PACKAGE = 'rliger', nn_ranked, clusts) | ||
} | ||
|
||
scale_columns_fast <- function(mat, scale = TRUE, center = TRUE) { | ||
.Call('_rliger_scale_columns_fast', PACKAGE = 'rliger', mat, scale, center) | ||
} | ||
|
||
max_factor <- function(H, dims_use, center_cols = FALSE) { | ||
.Call('_rliger_max_factor', PACKAGE = 'rliger', H, dims_use, center_cols) | ||
} | ||
|
||
solveNNLS <- function(C, B) { | ||
.Call('_rliger_solveNNLS', PACKAGE = 'rliger', C, B) | ||
} | ||
|
||
ComputeSNN <- function(nn_ranked, prune) { | ||
.Call('_rliger_ComputeSNN', PACKAGE = 'rliger', nn_ranked, prune) | ||
} | ||
|
||
WriteEdgeFile <- function(snn, filename, display_progress) { | ||
invisible(.Call('_rliger_WriteEdgeFile', PACKAGE = 'rliger', snn, filename, display_progress)) | ||
} | ||
|
||
DirectSNNToFile <- function(nn_ranked, prune, display_progress, filename) { | ||
.Call('_rliger_DirectSNNToFile', PACKAGE = 'rliger', nn_ranked, prune, display_progress, filename) | ||
} | ||
|
Oops, something went wrong.