Skip to content

Commit

Permalink
v1.0.1, fixes for R-devel with Matrix 1.6-2
Browse files Browse the repository at this point in the history
  • Loading branch information
mvfki committed Nov 8, 2023
1 parent c5292ec commit b77fd01
Show file tree
Hide file tree
Showing 14 changed files with 215 additions and 254 deletions.
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: rliger
Version: 1.0.1
Date: 2023-11-02
Date: 2023-11-08
Type: Package
Title: Linked Inference of Genomic Experimental Relationships
Description: Uses an extension of nonnegative matrix factorization to identify shared and dataset-specific factors. See Welch J, Kozareva V, et al (2019) <doi:10.1016/j.cell.2019.05.006>, and Liu J, Gao C, Sodicoff J, et al (2020) <doi:10.1038/s41596-020-0391-8> for more details.
Expand Down Expand Up @@ -65,6 +65,7 @@ RoxygenNote: 7.2.3
Encoding: UTF-8
Suggests:
Seurat,
SeuratObject,
knitr,
reticulate,
rmarkdown,
Expand Down
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,6 @@
- Fix efficiency issue when taking the log of norm.data (e.g. `runWilcoxon`)
- Add runable examples to all exported functions when possible
- Fix typo in online_iNMF matrix initialization
- Adapt to Seurat5
- Other minor fixes

226 changes: 113 additions & 113 deletions R/RcppExports.R
Original file line number Diff line number Diff line change
@@ -1,113 +1,113 @@
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) {
.Call('_rliger_RunModularityClusteringCpp', PACKAGE = 'rliger', SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename)
}

scaleNotCenterFast <- function(x) {
.Call('_rliger_scaleNotCenterFast', PACKAGE = 'rliger', x)
}

rowMeansFast <- function(x) {
.Call('_rliger_rowMeansFast', PACKAGE = 'rliger', x)
}

rowVarsFast <- function(x, means) {
.Call('_rliger_rowVarsFast', PACKAGE = 'rliger', x, means)
}

sumSquaredDeviations <- function(x, means) {
.Call('_rliger_sumSquaredDeviations', PACKAGE = 'rliger', x, means)
}

cpp_sumGroups_dgc <- function(x, p, i, ncol, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dgc', PACKAGE = 'rliger', x, p, i, ncol, groups, ngroups)
}

cpp_sumGroups_dgc_T <- function(x, p, i, ncol, nrow, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dgc_T', PACKAGE = 'rliger', x, p, i, ncol, nrow, groups, ngroups)
}

cpp_sumGroups_dense <- function(X, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dense', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_sumGroups_dense_T <- function(X, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_nnzeroGroups_dense <- function(X, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dense', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_nnzeroGroups_dense_T <- function(X, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_nnzeroGroups_dgc <- function(p, i, ncol, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dgc', PACKAGE = 'rliger', p, i, ncol, groups, ngroups)
}

cpp_in_place_rank_mean <- function(v_temp, idx_begin, idx_end) {
.Call('_rliger_cpp_in_place_rank_mean', PACKAGE = 'rliger', v_temp, idx_begin, idx_end)
}

cpp_rank_matrix_dgc <- function(x, p, nrow, ncol) {
.Call('_rliger_cpp_rank_matrix_dgc', PACKAGE = 'rliger', x, p, nrow, ncol)
}

cpp_rank_matrix_dense <- function(X) {
.Call('_rliger_cpp_rank_matrix_dense', PACKAGE = 'rliger', X)
}

cpp_nnzeroGroups_dgc_T <- function(p, i, ncol, nrow, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dgc_T', PACKAGE = 'rliger', p, i, ncol, nrow, groups, ngroups)
}

#' Fast calculation of feature count matrix
#'
#' @param bedmat A feature count list generated by bedmap
#' @param barcodes A list of barcodes
#'
#' @return A feature count matrix with features as rows and barcodes as
#' columns
#' @export
#' @examples
#' \dontrun{
#' gene.counts <- makeFeatureMatrix(genes.bc, barcodes)
#' promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes)
#' samnple <- gene.counts + promoter.counts
#' }
makeFeatureMatrix <- function(bedmat, barcodes) {
.Call('_rliger_makeFeatureMatrix', PACKAGE = 'rliger', bedmat, barcodes)
}

cluster_vote <- function(nn_ranked, clusts) {
.Call('_rliger_cluster_vote', PACKAGE = 'rliger', nn_ranked, clusts)
}

scale_columns_fast <- function(mat, scale = TRUE, center = TRUE) {
.Call('_rliger_scale_columns_fast', PACKAGE = 'rliger', mat, scale, center)
}

max_factor <- function(H, dims_use, center_cols = FALSE) {
.Call('_rliger_max_factor', PACKAGE = 'rliger', H, dims_use, center_cols)
}

solveNNLS <- function(C, B) {
.Call('_rliger_solveNNLS', PACKAGE = 'rliger', C, B)
}

ComputeSNN <- function(nn_ranked, prune) {
.Call('_rliger_ComputeSNN', PACKAGE = 'rliger', nn_ranked, prune)
}

WriteEdgeFile <- function(snn, filename, display_progress) {
invisible(.Call('_rliger_WriteEdgeFile', PACKAGE = 'rliger', snn, filename, display_progress))
}

DirectSNNToFile <- function(nn_ranked, prune, display_progress, filename) {
.Call('_rliger_DirectSNNToFile', PACKAGE = 'rliger', nn_ranked, prune, display_progress, filename)
}

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename) {
.Call('_rliger_RunModularityClusteringCpp', PACKAGE = 'rliger', SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename)
}

scaleNotCenterFast <- function(x) {
.Call('_rliger_scaleNotCenterFast', PACKAGE = 'rliger', x)
}

rowMeansFast <- function(x) {
.Call('_rliger_rowMeansFast', PACKAGE = 'rliger', x)
}

rowVarsFast <- function(x, means) {
.Call('_rliger_rowVarsFast', PACKAGE = 'rliger', x, means)
}

sumSquaredDeviations <- function(x, means) {
.Call('_rliger_sumSquaredDeviations', PACKAGE = 'rliger', x, means)
}

cpp_sumGroups_dgc <- function(x, p, i, ncol, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dgc', PACKAGE = 'rliger', x, p, i, ncol, groups, ngroups)
}

cpp_sumGroups_dgc_T <- function(x, p, i, ncol, nrow, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dgc_T', PACKAGE = 'rliger', x, p, i, ncol, nrow, groups, ngroups)
}

cpp_sumGroups_dense <- function(X, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dense', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_sumGroups_dense_T <- function(X, groups, ngroups) {
.Call('_rliger_cpp_sumGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_nnzeroGroups_dense <- function(X, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dense', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_nnzeroGroups_dense_T <- function(X, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dense_T', PACKAGE = 'rliger', X, groups, ngroups)
}

cpp_nnzeroGroups_dgc <- function(p, i, ncol, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dgc', PACKAGE = 'rliger', p, i, ncol, groups, ngroups)
}

cpp_in_place_rank_mean <- function(v_temp, idx_begin, idx_end) {
.Call('_rliger_cpp_in_place_rank_mean', PACKAGE = 'rliger', v_temp, idx_begin, idx_end)
}

cpp_rank_matrix_dgc <- function(x, p, nrow, ncol) {
.Call('_rliger_cpp_rank_matrix_dgc', PACKAGE = 'rliger', x, p, nrow, ncol)
}

cpp_rank_matrix_dense <- function(X) {
.Call('_rliger_cpp_rank_matrix_dense', PACKAGE = 'rliger', X)
}

cpp_nnzeroGroups_dgc_T <- function(p, i, ncol, nrow, groups, ngroups) {
.Call('_rliger_cpp_nnzeroGroups_dgc_T', PACKAGE = 'rliger', p, i, ncol, nrow, groups, ngroups)
}

#' Fast calculation of feature count matrix
#'
#' @param bedmat A feature count list generated by bedmap
#' @param barcodes A list of barcodes
#'
#' @return A feature count matrix with features as rows and barcodes as
#' columns
#' @export
#' @examples
#' \dontrun{
#' gene.counts <- makeFeatureMatrix(genes.bc, barcodes)
#' promoter.counts <- makeFeatureMatrix(promoters.bc, barcodes)
#' samnple <- gene.counts + promoter.counts
#' }
makeFeatureMatrix <- function(bedmat, barcodes) {
.Call('_rliger_makeFeatureMatrix', PACKAGE = 'rliger', bedmat, barcodes)
}

cluster_vote <- function(nn_ranked, clusts) {
.Call('_rliger_cluster_vote', PACKAGE = 'rliger', nn_ranked, clusts)
}

scale_columns_fast <- function(mat, scale = TRUE, center = TRUE) {
.Call('_rliger_scale_columns_fast', PACKAGE = 'rliger', mat, scale, center)
}

max_factor <- function(H, dims_use, center_cols = FALSE) {
.Call('_rliger_max_factor', PACKAGE = 'rliger', H, dims_use, center_cols)
}

solveNNLS <- function(C, B) {
.Call('_rliger_solveNNLS', PACKAGE = 'rliger', C, B)
}

ComputeSNN <- function(nn_ranked, prune) {
.Call('_rliger_ComputeSNN', PACKAGE = 'rliger', nn_ranked, prune)
}

WriteEdgeFile <- function(snn, filename, display_progress) {
invisible(.Call('_rliger_WriteEdgeFile', PACKAGE = 'rliger', snn, filename, display_progress))
}

DirectSNNToFile <- function(nn_ranked, prune, display_progress, filename) {
.Call('_rliger_DirectSNNToFile', PACKAGE = 'rliger', nn_ranked, prune, display_progress, filename)
}

Loading

0 comments on commit b77fd01

Please sign in to comment.