Skip to content

v0.4.0

Latest
Compare
Choose a tag to compare
@wilhelmagren wilhelmagren released this 10 Nov 20:05
· 34 commits to main since this release
c354794

finq Release Notes

This minor release introduces new optimization functionality for the Portfolio class. It supports minimizing virtually any objective function using either any of the supported scikit-learn optimizers, or a custom optimizer that you provide.

Take a look at the example available under the examples directory in the repository for information on the optimization api.

📋 Changelog:

  • feat(finq): bump minor release 0.3.0 → 0.4.0 (#67)
  • docs(image): OMXS30 sharpe ratio COBYLA plot (#66)
  • docs(examples): mean variance optimization with COBYLA
  • feat(portfolio): mean variance optimization with constraints (COBYLA)
  • feat(opt): add exception information to user
  • feat(plot): randomize portfolios and plot mean variance
  • feat(optimize): add formulas, constraints, and objective functions
  • Merge pull request #61 from wilhelmagren/feature/portfolio
  • feat(portfolio): implement formulas, weight check decorator.
  • Merge pull request #59 from wilhelmagren/feature/asset
  • build(finq): add mplfinance and plot deps
  • feat(dataset): index date handling, visualization
  • fix(dataset): modularize data and info features
  • feat(portfolio): implement computing quantities for portfolio
  • feat(asset): implement eq and hash functionality
  • build(test): ignore deprecation warnings when pytest
  • feat(asset): implement str and pre-compute
  • feat(asset): implement metrics and docs
  • feat(asset): implement quantities