Skip to content
/ DHF1K Public
forked from wenguanwang/DHF1K

Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR2018)

Notifications You must be signed in to change notification settings

wjakobw/DHF1K

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 

Repository files navigation

DHF1K

===========================================================================

W. Wang, J. Shen, F. Guo, M.-M Cheng and A. Borji,

Revisiting Video Saliency: A Large-scale Benchmark and a New Model,

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

=========================================================================== The code (ACL) and dataset can be downloaded from:

Google disk:https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

Baidu pan: https://pan.baidu.com/s/110NIlwRIiEOTyqRwYdDnVg

===========================================================================

Files:

'video': 1000 videos (videoname.AVI)

'annotation/videoname/maps': continuous saliency maps in '.png' format

'annotation/videoname/fixation': binary eye fixation maps in '.png' format

'annotation/videoname/maps': binary eye fixation maps stored in mat file

'generate_frame.m': used for extracting the frame images from AVI videos.

Note that please do not change the way of naming frames.

===========================================================================

Dataset splitting:

Training set: first 600 videos (001.AVI-600.AVI)

Validation set: 100 videos (601.AVI-700.AVI)

Testing set: 300 videos (701.AVI-1000.AVI)

The annotations for the training and val sets are released, but the

annotations of the testing set are held-out for benchmarking.

=========================================================================== We have corrected some statistics of our results (baseline training setting (iii)) on UCF sports dataset. Please see our newest version in ArXiv.

=========================================================================== Results submission.

Please orgnize your results in following format:

yourmethod/videoname/framename.png

Note that the frames and framenames should be generated by 'generate_frame.m'.

Then send your results to '[email protected]'.

You can only sumbmit ONCE within One week.

Please first test your model on the val set or other video saliency dataset.

The response may be more than one week.

If you want to list your results on our web, please send your name, model

name, paper title, short description of your method and the link of the web

of your project (if you have).

===========================================================================

Citation:

@inproceedings{wang2018revisiting,
	title={Revisiting Video Saliency: A Large-scale Benchmark and a New Model},
	author={Wang, Wenguan and Shen, Jianbing and Guo, Fang and Cheng, Ming-Ming and Borji, Ali},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
	year={2018},
}

If you find our dataset is useful, please cite above paper.

===========================================================================

Code (ACL):

You can find the code in google disk: https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

===========================================================================

Contact Information Email:


About

Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR2018)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published