This is the official implementation of our manuscript Lite-FPN for Keypoint-based Monocular 3D Object Detection.
All codes are tested under the following environment:
- Ubuntu 18.04
- Python 3.7
- Pytorch 1.3.1
- CUDA 10.1
We train and test our model on official KITTI 3D Object Dataset. Please first download the dataset and organize it as following structure:
kitti
│──training
│ ├──calib
│ ├──label_2
│ ├──image_2
│ └──ImageSets
└──testing
├──calib
├──image_2
└──ImageSets
- We use
conda
to manage the environment:
conda create -n Lite-FPN python=3.7
conda install pytorch=1.3 torchvision -c pytorch
conda install yacs scikit-image tqdm numba fire pybind11
pip install mmcv-full==1.2.5
pip install mmdet==2.11.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v0.9.0
pip install -v -e . # or "python setup.py develop"
- Build codes:
cd Lite-FPN
python setup.py build develop
- Link to dataset directory:
mkdir datasets
ln -s /path_to_kitti_dataset datasets/kitti
First check the config file under configs/
.
Training :
python tools/plain_train_net.py --config-file "configs/smoke_gn_vector.yaml"
Evaluation :
python tools/evaluate_script.py --config-file "configs/smoke_gn_vector.yaml"
If you find our work useful in your research, please consider citing:
@article{Yang2021LiteFPNFK,
title={Lite-FPN for Keypoint-based Monocular 3D Object Detection},
author={Lei Yang and Xinyu Zhang and Li Wang and Minghan Zhu and Jun Li},
journal={ArXiv},
year={2021},
volume={abs/2105.00268}
}
Many thanks to these excellent open source projects: SMOKE
If you have any problem with this code, please feel free to contact [email protected].