-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattack.py
751 lines (636 loc) · 35.1 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import torch.utils.data.sampler as sampler
import torch.utils.data as data
from torch.utils.data import Dataset
from torchvision.datasets.folder import ImageFolder, IMG_EXTENSIONS, default_loader
from torch.autograd import Variable, Function
import numpy as np
import argparse
import pickle
import random
import os
import tqdm
import time
import copy
# import glob
# import pdb
# import shutil
import cv2
import blackbox_model.models.zoo as zoo
from blackbox_model.victim.blackbox import Blackbox
import blackbox_model.datasets as datasets
from PIL import Image
# import wandb
import warnings
from sklearn.metrics import accuracy_score, normalized_mutual_info_score
from scipy.stats import entropy
from my_transform import RandomErasing, PrioriErasing, PrioriPatchErasing
from sampler import Kcenter_sampler, Entropy_sampler
warnings.filterwarnings('ignore')
torch.multiprocessing.set_sharing_strategy('file_system')
parser = argparse.ArgumentParser()
parser.add_argument("--test_dataset", type=str, default='CIFAR10')
parser.add_argument("--dataset_path", type=str, default='./label_only/cifar/transferset.pickle')
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--modelname", type=str, default="resnet34")
parser.add_argument("--cuda", type=bool, default=True)
parser.add_argument("--train_epochs", type=int, default=200)
parser.add_argument("--initial_budget", type=int, default=100)
parser.add_argument("--blackbox_dir", type=str, default='models/victim/cifar10-resnet34')
parser.add_argument("--save_dir", type=str, default='./label_only/cifar/our/')
parser.add_argument("--tmp_dir", type=str, default='./images/cifar_tmp_our/')
parser.add_argument("--sampling_strategy", type=str, default='random')
parser.add_argument("--lr", type=float, default=0.02)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--sh", type=float, default=0.1)
parser.add_argument("--num_workers", type=int, default=16)
parser.add_argument('--pretrained', type=str, default=None)
parser.add_argument("--step_size", type=int, default=60)
parser.add_argument("--erase_rate", type=float, default=0.25)
args = parser.parse_args()
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.tmp_dir):
os.mkdir(args.tmp_dir)
cifar_train_transform = transforms.Compose([
transforms.Resize(32),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2023, 0.1994, 0.2010)),
])
mnist_train_transform = transforms.Compose([
transforms.Resize(28),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
imagenet_train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
def init_seed(seed=123):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_pseudo_label(task_model, img, num=10):
tmp_e_trans = RandomErasing(probability=1, sh=args.sh, mean=[0, 0, 0])
e_imgs = []
for j in range(num):
e_imgs.extend(tmp_e_trans(img.clone()).unsqueeze(0))
e_imgs = torch.stack(e_imgs, 0)
with torch.no_grad():
pre = (F.softmax(task_model(e_imgs.cuda()), dim=1).cpu().sum(0).unsqueeze(0))/num
return pre
def get_soft_targets(task_model, imgs):
e_trans = RandomErasing(probability=1, sh=args.sh, mean=[0,0,0])
e_label = []
task_model.eval()
for i in range(imgs.size(0)):
img = imgs[i]
e_imgs = []
for j in range(10):
e_imgs.extend(e_trans(img.clone()).unsqueeze(0))
e_imgs = torch.stack(e_imgs, 0)
with torch.no_grad():
e_label.extend((F.softmax(task_model(e_imgs.cuda()), dim=1).cpu().sum(0).unsqueeze(0))/10)
e_label = torch.stack(e_label, 0)
task_model.train()
return e_label
class FeatureExtractor():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, target_layers):
self.model = model
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for name, module in self.model._modules.items():
x = module(x)
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
return outputs, x
class ModelOutputs():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model, feature_module, target_layers):
self.model = model
self.feature_module = feature_module
self.feature_extractor = FeatureExtractor(self.feature_module, target_layers)
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
target_activations = []
for name, module in self.model._modules.items():
if module == None:
continue
if module == self.feature_module:
target_activations, x = self.feature_extractor(x)
elif "avgpool" in name.lower():
x = module(x)
x = x.view(x.size(0),-1)
elif "view" in name.lower():
x = x.view(x.size(0),-1)
elif "classifier" in name.lower():
x = x.view(x.size(0),-1)
x = module(x)
else:
x = module(x)
return target_activations, x
class GradCam:
def __init__(self, model, feature_module, target_layer_names, use_cuda):
self.model = model
self.feature_module = feature_module
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.extractor = ModelOutputs(self.model, self.feature_module, target_layer_names)
def forward(self, input):
return self.model(input)
def __call__(self, input, index=None):
if self.cuda:
features, output = self.extractor(input.cuda())
else:
features, output = self.extractor(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][index] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
self.feature_module.zero_grad()
self.model.zero_grad()
one_hot.backward(retain_graph=True)
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
target = features[-1]
target = target.cpu().data.numpy()[0, :]
weights = np.mean(grads_val, axis=(2, 3))[0, :]
cam = np.zeros(target.shape[1:], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * target[i, :, :]
cam = np.maximum(cam, 0)
cam = cv2.resize(cam, input.shape[2:])
cam = cam - np.min(cam)
cam = cam / np.max(cam)
return cam
class TransferSetImagePaths(ImageFolder):
"""TransferSet Dataset, for when images are stored as *paths*"""
def __init__(self, samples, transform=None, target_transform=None):
self.loader = default_loader
self.extensions = IMG_EXTENSIONS
self.samples = samples
self.targets = [s[1] for s in samples]
self.transform = transform
self.target_transform = target_transform
class NewImageNet(Dataset):
def __init__(self, samples, transform=None, target_transform=None):
self.imagenet = TransferSetImagePaths(samples=samples, transform=transform)
def __len__(self):
return len(self.imagenet)
def __getitem__(self, index):
if isinstance(index, np.float64):
index = index.astype(np.int64)
data, target = self.imagenet[index]
return data, target, index
def preprocess_img(sample, tmp_dir, labeled=True):
new_sample = []
t = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()])
if labeled:
for path, one_hot in tqdm.tqdm(sample):
img = Image.open(path).convert("RGB")
img = t(img)
new_path = tmp_dir + path.split('/')[-1]
torchvision.utils.save_image(img.clone(), new_path)
new_sample.append((new_path, one_hot))
else:
for path in tqdm.tqdm(sample):
img = Image.open(path).convert("RGB")
img = t(img)
new_path = tmp_dir + path.split('/')[-1]
torchvision.utils.save_image(img.clone(), new_path)
new_sample.append(new_path)
return new_sample
def selected_with_kcenter(k_model, labeled_indices, all_indices, dataset_name, split, all_sample):
kcenter_sampler = Kcenter_sampler()
unlabeled_indices = np.setdiff1d(list(all_indices), labeled_indices)
if dataset_name == 'CIFAR10':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'SVHN':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'MNIST':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize(mean=[0.1307,], std=[0.3081,])])
else:
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
all_dataset = NewImageNet(samples=all_sample, transform=transform)
unlabeled_sampler = data.sampler.SubsetRandomSampler(unlabeled_indices)
labeled_sampler = data.sampler.SubsetRandomSampler(labeled_indices)
unlabeled_dataloader = data.DataLoader(all_dataset, sampler=unlabeled_sampler, batch_size=128, drop_last=False, num_workers=8)
labeled_dataloader = data.DataLoader(all_dataset, sampler=labeled_sampler, batch_size=128, drop_last=False, num_workers=8)
sampled_indices = kcenter_sampler.sampler(k_model.cuda(), unlabeled_dataloader, True, split, labeled_dataloader, False)
return sampled_indices
def get_pseudo_label_with_kcenter(task_model, labeled_indices, all_indices, dataset_name, split, all_sample, tmp_dir):
new_sample = []
kcenter_sampler = Kcenter_sampler()
unlabeled_indices = np.setdiff1d(list(all_indices), labeled_indices)
if dataset_name == 'CIFAR10':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'SVHN':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'MNIST':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize(mean=[0.1307,], std=[0.3081,])])
else:
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
t = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()])
all_dataset = NewImageNet(samples=all_sample, transform=transform)
unlabeled_sampler = data.sampler.SubsetRandomSampler(unlabeled_indices)
labeled_sampler = data.sampler.SubsetRandomSampler(labeled_indices)
unlabeled_dataloader = data.DataLoader(all_dataset, sampler=unlabeled_sampler, batch_size=128, drop_last=False, num_workers=8)
labeled_dataloader = data.DataLoader(all_dataset, sampler=labeled_sampler, batch_size=128, drop_last=False, num_workers=8)
sampled_indices = kcenter_sampler.sampler(task_model.cuda(), unlabeled_dataloader, True, split, labeled_dataloader, False)
for i in tqdm.tqdm(sampled_indices):
path, _ = all_sample[i]
img = Image.open(path).convert("RGB")
img = t(img)
new_path = tmp_dir + path.split('/')[-1]
torchvision.utils.save_image(img.clone(), new_path)
img = Image.open(path).convert("RGB")
img = transform(img)
pseudo_label = get_pseudo_label(task_model, img.clone())
new_sample.append((new_path, pseudo_label.squeeze()))
return new_sample, sampled_indices
def get_pseudo_label_with_entropy(task_model, labeled_indices, all_indices, dataset_name, split, all_sample, tmp_dir):
new_sample = []
entropy_sampler = Entropy_sampler
unlabeled_indices = np.setdiff1d(list(all_indices), labeled_indices)
if dataset_name == 'CIFAR10':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'SVHN':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'MNIST':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize(mean=[0.1307,], std=[0.3081,])])
else:
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
t = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()])
all_dataset = NewImageNet(samples=all_sample, transform=transform)
unlabeled_sampler = data.sampler.SubsetRandomSampler(unlabeled_indices)
labeled_sampler = data.sampler.SubsetRandomSampler(labeled_indices)
unlabeled_dataloader = data.DataLoader(all_dataset, sampler=unlabeled_sampler, batch_size=128, drop_last=False, num_workers=10)
labeled_dataloader = data.DataLoader(all_dataset, sampler=labeled_sampler, batch_size=128, drop_last=False, num_workers=10)
sampled_indices = entropy_sampler.sampler(task_model.cuda(), unlabeled_dataloader, True, split)
for i in tqdm.tqdm(sampled_indices):
path, _ = all_sample[i]
img = Image.open(path).convert("RGB")
img = t(img)
new_path = tmp_dir + path.split('/')[-1]
torchvision.utils.save_image(img.clone(), new_path)
img = Image.open(path).convert("RGB")
img = transform(img)
pseudo_label = get_pseudo_label(task_model, img.clone())
new_sample.append((new_path, pseudo_label.squeeze()))
return new_sample, sampled_indices
def get_pseudo_label_with_random(task_model, labeled_indices, all_indices, dataset_name, split, all_sample, tmp_dir):
new_sample = []
unlabeled_indices = np.setdiff1d(list(all_indices), labeled_indices)
if dataset_name == 'CIFAR10':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'SVHN':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'MNIST':
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize(mean=[0.1307,], std=[0.3081,])])
else:
transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
t = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()])
all_dataset = NewImageNet(samples=all_sample, transform=transform)
sampled_indices = random.sample(list(unlabeled_indices), split)
for i in tqdm.tqdm(sampled_indices):
path, _ = all_sample[i]
img = Image.open(path).convert("RGB")
img = t(img)
new_path = tmp_dir + path.split('/')[-1]
torchvision.utils.save_image(img.clone(), new_path)
img = Image.open(path).convert("RGB")
img = transform(img)
pseudo_label = get_pseudo_label(task_model, img.clone())
new_sample.append((new_path, pseudo_label.squeeze()))
return new_sample, sampled_indices
def erase_and_save(task_model, indices, all_sample, save_dir, dataset_name, split, budget, num=10):
e_dir = []
e_pres = []
if dataset_name == 'CIFAR10':
e_trans = PrioriPatchErasing(probability=1, sh=0.1, mean=[0.4914, 0.4822, 0.4465])
norm = transforms.Compose([transforms.ToPILImage(), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
mask_trans = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
if args.modelname == 'resnet34':
grad_cam = GradCam(model=task_model, feature_module=task_model.layer3, target_layer_names=["4"], use_cuda=True)
elif args.modelname == 'resnet18':
grad_cam = GradCam(model=task_model, feature_module=task_model.layer3, target_layer_names=["2"], use_cuda=True)
elif args.modelname == 'resnet50':
grad_cam = GradCam(model=task_model, feature_module=task_model.layer3, target_layer_names=["8"], use_cuda=True)
elif args.modelname == 'densenet':
grad_cam = GradCam(model=task_model, feature_module=task_model.dense3, target_layer_names=["2"], use_cuda=True)
elif args.modelname == 'vgg16':
grad_cam = GradCam(model=task_model, feature_module=task_model.features, target_layer_names=["28"], use_cuda=True)
elif dataset_name == 'SVHN':
e_trans = PrioriPatchErasing(probability=1, sh=0.1, mean=[0.4914, 0.4822, 0.4465])
norm = transforms.Compose([transforms.ToPILImage(), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
mask_trans = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
grad_cam = GradCam(model=task_model, feature_module=task_model.layer3, target_layer_names=["4"], use_cuda=True)
elif dataset_name == 'MNIST':
e_trans = PrioriPatchErasing(probability=1, sh=0.1, mean=[0.1307, 0.1307, 0.1307])
norm = transforms.Compose([transforms.ToPILImage(), transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mask_trans = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize(mean=[0.1307,], std=[0.3081,])])
grad_cam = GradCam(model=task_model, feature_module=task_model.layer1, target_layer_names=["2"], use_cuda=True)
else:
e_trans = PrioriPatchErasing(probability=1, sh=0.1, mean=[0.485, 0.456, 0.406])
norm = transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
mask_trans = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
grad_cam = GradCam(model=task_model, feature_module=task_model.layer4, target_layer_names=["2"], use_cuda=True)
t = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()])
for i in tqdm.tqdm(indices):
path, one_hot = all_sample[i]
ID = str((path.split('/')[-1]).split('.')[0])
img = Image.open(path).convert("RGB")
img = t(img)
cam_input = Image.open(path).convert("RGB")
cam_input = mask_trans(cam_input).unsqueeze(0)
mask = grad_cam(cam_input)
tmp_e_img = []
tmp_e_pres = []
for j in range(num):
e = e_trans(img.clone(), mask)
tmp_e_img.append(e)
for e in tmp_e_img:
with torch.no_grad():
task_model.eval()
pred = task_model(norm(e.clone()).unsqueeze(0).cuda())
pred = F.softmax(pred, dim=1).cpu().data
tmp_e_pres.append(pred)
tmp_score = [soft_cross_entropy(p.unsqueeze(0), one_hot) for p in tmp_e_pres]
tmp_score = torch.from_numpy(np.array(tmp_score)).view(-1)
_, t_indices = tmp_score.max(0)
save_path = save_dir + '{}_e_{}.JPEG'.format(ID, split)
e_dir.append(save_path)
e_pres.append(tmp_e_pres[t_indices])
torchvision.utils.save_image(tmp_e_img[t_indices].clone(), save_path)
scores = [p.max() for p in e_pres]
scores = torch.from_numpy(np.array(scores))
scores = scores.view(-1)
_, querry_indices = torch.topk(scores, budget)
tmp = []
selected_indices = []
for i in querry_indices:
tmp.append(e_dir[i])
selected_indices.append(indices[i])
return tmp, selected_indices
def query(blackbox_model, path, dataset_name):
new = []
if dataset_name == 'CIFAR10':
transform = transforms.Compose([transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'SVHN':
transform = transforms.Compose([transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
elif dataset_name == 'MNIST':
transform = transforms.Compose([transforms.Resize(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), transforms.Normalize(mean=[0.1307,], std=[0.3081,])])
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
for p in path:
img = Image.open(p).convert("RGB")
with torch.no_grad():
e_true = blackbox(transform(img).cuda().unsqueeze(0)).cpu().squeeze()
argmax_k = e_true.argmax()
y_i_1hot = torch.zeros_like(e_true)
y_i_1hot[argmax_k] = 1.
new.append((p,y_i_1hot))
return new
def soft_cross_entropy(pred, soft_targets, weights=None):
if weights is not None:
return torch.mean(torch.sum(- soft_targets * F.log_softmax(pred, dim=1) * weights.unsqueeze(-1).float(), 1))
# return torch.mean(torch.sum(- soft_targets * F.log_softmax(pred, dim=1) * weights, 1))
else:
return torch.mean(torch.sum(- soft_targets * F.log_softmax(pred, dim=1), 1))
def pseudo_loss(outputs, one_hot_targets, soft_targets):
alpha = 0.5
T = 2
loss_CE = soft_cross_entropy(outputs, one_hot_targets)
loss_p = soft_cross_entropy(outputs/T, F.softmax(soft_targets/T, dim=1)) * (T*T)
loss = (1. - alpha)*loss_CE + alpha*loss_p
return loss, loss_CE, loss_p
class Solver:
def __init__(self, args, test_dataloader):
self.args = args
self.test_dataloader = test_dataloader
self.ce_loss = soft_cross_entropy
self.loss_pseudo = pseudo_loss
self.mse_loss = nn.MSELoss(reduce=True, size_average=True)
def train(self, task_dataloader, task_model, split):
criterion = self.ce_loss
optim_task_model = optim.SGD(task_model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay, momentum=self.args.momentum)
task_scheduler = optim.lr_scheduler.StepLR(optim_task_model, step_size=self.args.step_size, gamma=0.1)
task_model.train()
best_acc = 0
print('=> start train task model with split:{}'.format(split))
best_train_acc, train_acc = -1., -1.
for iter_count in range(1, self.args.train_epochs + 1):
# for iter_count in range(1):
task_scheduler.step(iter_count)
train_loss, train_acc = self.train_step(split, task_model, task_dataloader, criterion, optim_task_model, iter_count, 'cuda', log_interval=10, param=self.args)
best_train_acc = max(best_train_acc, train_acc)
acc = self.test(task_model, iter_count)
if acc > best_acc:
best_acc = acc
best_model = copy.deepcopy(task_model.cpu())
print('best test acc: ', best_acc)
torch.cuda.empty_cache()
final_accuracy = self.test(best_model, self.args.train_epochs + 1, True)
savepath = os.path.join(self.args.save_dir, 'checkpoint_model_budget_{}_acc_{}.pth'.format(split, final_accuracy))
torch.save(best_model.state_dict(), savepath)
return final_accuracy, best_model
def test(self, task_model, epoch, silence=False):
task_model = task_model.cuda()
task_model.eval()
total, correct = 0, 0
with torch.no_grad():
for imgs, labels in self.test_dataloader:
if self.args.cuda:
imgs = imgs.cuda()
preds = task_model(imgs)
preds = torch.argmax(preds, dim=1).cpu().numpy()
correct += accuracy_score(labels, preds, normalize=False)
total += imgs.size(0)
acc = correct / total * 100
if not silence:
print('[Test] Epoch: {}\tAccuracy: {:.1f} ({}/{})'.format(epoch, acc, correct, total))
return acc
def train_step(self, split, model, train_loader, criterion, optimizer, epoch, device, log_interval=10, param=None):
model = model.cuda()
model.train()
train_loss = 0.
correct = 0
total = 0
train_loss_batch = 0
epoch_size = split
t_start = time.time()
for batch_idx, (inputs, targets, _) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
if len(targets.size()) == 2:
# Labels could be a posterior probability distribution. Use argmax as a proxy.
target_probs, target_labels = targets.max(1)
else:
target_labels = targets
correct += predicted.eq(target_labels).sum().item()
prog = total / epoch_size
exact_epoch = epoch + prog - 1
acc = 100. * correct / total
train_loss_batch = train_loss / total
if (batch_idx + 1) % log_interval == 0:
print('[Train] Epoch: {:.2f} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.1f} ({}/{})'.format(
exact_epoch, batch_idx * len(inputs), split, 100. * batch_idx / len(train_loader),
loss.item(), acc, correct, total))
t_end = time.time()
t_epoch = int(t_end - t_start)
acc = 100. * correct / total
torch.cuda.synchronize()
torch.cuda.empty_cache()
return train_loss_batch, acc
def similar_evaluation(task_model, black_box, test_dataloader):
total = 0
result = 0
task_model.eval()
task_model = task_model.cuda()
for images, _ in test_dataloader:
images = images.cuda()
with torch.no_grad():
task_preds = task_model(images).cpu().data.numpy().argmax(1)
black_box_preds = black_box(images).cpu().data.numpy().argmax(1)
result += np.sum(task_preds == black_box_preds)
total += images.size(0)
return (result / total) * 100
init_seed()
labeled_sample = []
pseudo_path = []
dataset_name = args.test_dataset
modelfamily = datasets.dataset_to_modelfamily[dataset_name]
transform = datasets.modelfamily_to_transforms[modelfamily]['test']
dataset = datasets.__dict__[dataset_name]
testset = dataset(train=False, transform=transform)
test_dataloader = data.DataLoader(testset, drop_last=False, batch_size=args.batch_size, shuffle=True, num_workers=16)
solver = Solver(args, test_dataloader)
blackbox = Blackbox.from_modeldir(args.blackbox_dir, 'cuda')
if args.test_dataset == 'CIFAR10':
transform = cifar_train_transform
elif args.test_dataset == 'SVHN':
transform = cifar_train_transform
elif args.test_dataset == 'MNIST':
transform = mnist_train_transform
else:
transform = imagenet_train_transform
with open(args.dataset_path, 'rb') as rf:
sample = pickle.load(rf)
num_classes = sample[0][1].size(0)
all_indices = set(np.arange(len(sample)))
labeled_indices = random.sample(list(all_indices), args.initial_budget)
new = []
for i in labeled_indices:
new.append(torch.tensor(i))
labeled_indices = new
for i in labeled_indices:
labeled_sample.append(sample[i])
labeled_sample = preprocess_img(labeled_sample, args.tmp_dir, labeled=True)
erase_indices = []
splits = [100, 200, 500, 800, 1000, 2000, 5000, 10000, 20000, 30000]
budgets = [ 100, 300, 300, 200, 1000, 3000, 5000, 10000, 10000, 0]
acc_path = args.save_dir + 'acc.log'
sample_path = args.save_dir + 'sample.pickle'
indices_path = args.save_dir + 'indices.pickle'
for split, budget in zip(splits, budgets):
# First training, using labeled data.
task_model = zoo.get_net(modelname=args.modelname, modeltype=modelfamily, pretrained=None, num_classes=num_classes)
labeled_dataset = NewImageNet(samples=labeled_sample,transform=transform)
labeled_dataloader = data.DataLoader(labeled_dataset, batch_size=128, drop_last=False, num_workers=args.num_workers, shuffle=True)
acc, task_model = solver.train(labeled_dataloader, task_model, split)
similar = similar_evaluation(task_model, blackbox, test_dataloader)
print("acc:{}, similarty:{}".format(acc, similar))
with open(acc_path, 'a') as af:
af.write(str(split) + ' ' + 'similar:' + str(similar) + '\n')
af.write(str(split) + ' ' + 'acc:' + str(acc) + '\n')
k_model = copy.deepcopy(task_model)
# Getting pseudo label.
pseudo_sample, pseudo_indices = get_pseudo_label_with_random(task_model, labeled_indices, all_indices, args.test_dataset, split, sample, args.tmp_dir)
torch.cuda.empty_cache()
# Second training, using labeled data and pseudo labeled data.
task_model = zoo.get_net(modelname=args.modelname, modeltype=modelfamily, pretrained=None, num_classes=num_classes)
train_dataset = NewImageNet(samples=labeled_sample+pseudo_sample,transform=transform)
train_dataloader = data.DataLoader(train_dataset, batch_size=128, drop_last=False, num_workers=args.num_workers, shuffle=True)
acc, task_model = solver.train(train_dataloader, task_model, split*2)
similar = similar_evaluation(task_model, blackbox, test_dataloader)
print("acc:{}, similarty:{}".format(acc, similar))
with open(acc_path, 'a') as af:
af.write(str(split) + ' ' + 'similar:' + str(similar) + '\n')
af.write(str(split) + ' ' + 'acc:' + str(acc) + '\n')
torch.cuda.empty_cache()
# Select new samples, where the original pictures and the erased pictures each account for 50%.
unerase_indices = np.setdiff1d(list(labeled_indices), erase_indices)
if len(unerase_indices) >= int(budget*args.erase_rate):
erase_path, selected_indices = erase_and_save(task_model, unerase_indices, sample, args.tmp_dir, args.test_dataset, split, int(budget*args.erase_rate))
erase_indices += selected_indices
erase_sample = query(blackbox, erase_path, args.test_dataset)
labeled_sample += erase_sample
if args.sampling_strategy == 'random':
selected_indices = random.sample(list(np.setdiff1d(list(all_indices), labeled_indices)), int(budget*(1-args.erase_rate)))
elif args.sampling_strategy =='kcenter':
selected_indices = selected_with_kcenter(k_model, labeled_indices, all_indices, args.test_dataset, int(budget*(1-args.erase_rate)), sample)
else:
raise ValueError("Unrecognized strategy")
else:
erase_path, selected_indices = erase_and_save(task_model, unerase_indices, sample, args.tmp_dir, args.test_dataset, split, len(unerase_indices))
erase_indices += selected_indices
erase_sample = query(blackbox, erase_path, args.test_dataset)
labeled_sample += erase_sample
if args.sampling_strategy == 'random':
selected_indices = random.sample(list(np.setdiff1d(list(all_indices), labeled_indices)), int(budget - len(unerase_indices)))
elif args.sampling_strategy =='kcenter':
selected_indices = selected_with_kcenter(k_model, labeled_indices, all_indices, args.test_dataset, int(budget - len(unerase_indices)), sample)
else:
raise ValueError("Unrecognized strategy")
labeled_indices += list(selected_indices)
tmp = []
for i in selected_indices:
tmp.append(sample[i])
labeled_sample += preprocess_img(tmp, args.tmp_dir, labeled=True)
with open(sample_path, 'wb') as wf:
pickle.dump(labeled_sample, wf)
with open(indices_path, 'wb') as wf:
pickle.dump(labeled_indices, wf)
del task_model
torch.cuda.empty_cache()