Skip to content

zoopaper/flink-meetup

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

flink-meetup

2018

  1. 基于Flink的实时计算平台 邓小勇(静行)

    曾先后在阿里巴巴搜索、实时数据同步、离线数据同步等岗位工作,并从无到有搭建阿里流计算平台,服务阿里集团内部、公共云和专有云等各类客户。

  2. Flink 在车联网领域的实践 张皓

    现任北京汇通天下G7系统架构师,同时也是北京汇通天下DSP中心平台技术部负责人,负责公司Paas平台和BI平台。加入G7前,先后在新蛋中国,创业公司工作多年。关注领域:分布式,平台化,数据化驱动和运营。

  3. 《Flink 技术介绍和新功能展望》 伍翀(云邪)

    北京理工大学硕士毕业,2015 年加入阿里巴巴,参与阿里巴巴实时计算引擎 JStorm 的开发与设计。2016 年开始从事阿里新一代实时计算引擎 Blink SQL 的开发与优化,并活跃于 Flink 社区,于2017年2月成为ApacheFlink Committer,是国内早期 Flink Committer 之一。目前主要专注于分布式处理和实时计算,热爱开源,热爱分享。

  4. 《Flink: 下一代大数据处理引擎》 陈守元(巴真)

    阿里巴巴实时计算团队产品负责人,2010年毕业即加入阿里集团参与淘宝数据平台建设,近10年的大数据从业经验,开源项目Alibaba DataX发起人,当前负责阿里实时计算产品Flink的规划与设计,致力于推动Flink成为下一代大数据处理标准。


2018FlinkForward

主会场 (Keynotes) 视频 (videos)

01 Craig Russell - Apache Flink: 践行 Apache 之道 (Apache Flink: The Apache Way in Action)

02 周靖人 - 云上计算普惠科技 (Cloud Computing Democratizes Technology)

03 蒋晓伟 - Apache Flink® - Redefining Computation

04 Stephan Ewen - Stream Processing takes on Everything

05 闵万里 - 城市级实时计算的力量 (Real-Time Computation for Scale of Cities)

06 罗李 - 滴滴实时计算平台架构与实践 (Architecture and Practices of Didi's Real-Time Computation Platform)

分会场一 (Room 1) 视频 (videos)

01 钱正平 - 为并行图数据处理提供高层抽象/语言 (High-level Abstradction and Languages for Parallel Graph Computation)

02 秦江杰 / 孙金城 - Simplify Machine Learning With Flink TableAPI

03 时金魁 - Flink七武器及应用实战 (Seven Weapons of Flink in Action)

04 崔星灿 - 快速融入Apache Flink开源社区 (Getting Involved in the Apache Flink Community)

05 施晓罡 / 郑灿彬 - 基于Apache Flink的平台化构建及运维优化经验 (Expereince of Building and Operating Platform based on Flink)

06 马国维 / 陶阳宇 - Runtime Improvements for Flink as a Unified Engine

分会场二 (Room 2) 视频 (videos)

01 Radu Tudoran - Flink Forward China 2018

02 Konstantin Knauf - Apache Flink® 1.7 and Beyond

03 李峰 - FLINK在大规模实时无效广告流量检测中的应用 (Flink in Detecting Massive Real-Time Ineffective Traffic)

04 Piotr Nowojsk - Flink Streaming SQL 2018

05 孟文瑞 / 于淼 - Uber 商业性能指标生成与管理 (Generating and Managing Business Metrics at Uber)

06 戴资力 - Apache Flink 流式应用中状态的数据结构定义升级 (State Schema Evolution for Apache Flink Applications)

分会场三 (Room 3) 视频 (videos)

01 邹丹 - Flink在字节跳动的实践 (The Practice of Apache Flink at ByteDance)

02 鞠⼤升 - 基于Flink的美团点评实时计算平台实践和应⽤ (The Practice and Application of Meituan-Dianping's Realtime Computation Platform on Flink)

03 杨克特 / 伍翀 - 基于streaming构建统一的数据处理引擎的挑战与实践 (Challenges and Practices in Building Streaming-based Unified Data Processing Engine for Batch and Streaming)

04 杨旭 - Alink:基于Apache Flink的算法平台 (Alink: An Algorithm Platform on Flink)

05 李钰 / 唐云 - Flink中的两类新型状态存储 (Introduction of Two New State Backends)

06 陈越晨 - Apache Flink在爱奇艺的应用实践 (The Practice of Apache Flink at iQiyi)

分会场四 (Room 4) 视频 (videos)

01 王绍翾 / 章剑锋 - Challenges and Opportunities of Apache Flink® Ecosystem

02 翟佳 / 郭斯杰 - 使⽤Flink和Pulsar进⾏批流⼀体弹性计算 (Elastic Stream and Batch Processing with Apache Flink and Apache Pulsar)

03 滕昱 - 为流处理世界重新设计的存储 (Project Pravega: Storage Reimagined for a Streaming World)

04 冯嘉 - 轻量级消息流计算平台探索实践【不公开】(private talk)

05 任春德 / 石春晖 - Deploy Apache Flink Natively on YARN_Kubernetes

06 徐骁 - Apache Flink 和 Elasticsearch 助⼒实时 OLAP 平台 (Apache Flink and Elasticsearch Power Realtime OLAP Platform at Qunar)

分会场五 (Room 5) 视频 (videos)

01 姜春宇 - 以标准推动开源技术在行业的落地

02 石春晖 - Columnar Execution for Apache Flink Batch

03 陈华曦 - 基于Apache Flink的搜索处理平台 (Alibaba's Search Offline Platform based on Flink)

04 訚赛华 - 袋鼠云基于实时计算的反黄牛算法 (Realtime Algorithm for Detecting Ticket Scalper at DTStack)

05 倪春恩 - Apache Kylin:大数据OLAP利器

06 李剑 - Flink在阿里巴巴电商业务中的应用 (Application of Flink in Alibaba E-Commerce Business)


Flink Forward San Francisco 2017 Slides and Videos

In April 2017, Flink Forward came to San Francisco to welcome the Apache Flink community to one day of training and one day of conference.

All the slides have been collected under folder slides, you can download directly. All the videos are available on YouTube Channel.

🔥 is the session which is recommended to see based on my opinion (Jark Wu).

Sessions

  • 🔥Stephan Ewen - Convergence of real-time analytics & data-driven applications: SlideShare and Video
  • Srikanth Satya - Pravega: SlideShare and Video
  • Erik de Nooij - StreamING models, Realtime model deployment of ML capabilites: SlideShare and Video
  • Monal Daxini - Stream Processing with Flink at Netflix: SlideShare and Video
  • Chinmay Soman - Real Time Analytics in the Real World: SlideShare and Video
  • S. Satya & T. Kaitchuck - Pravega: Storage Reimagined for Streaming World: SlideShare and Video
  • James Malone - Make The Cloud Work For You: SlideShare and Video
  • Dean Wampler - Streaming Deep Learning Scenarios with Flink: SlideShare and Video
  • Shaoxuan Wang & Xiaowei Jiang - Blinks Improvements to Flink SQL And TableAPI: SlideShare and Video
  • Hardwick, Hester & Brelloch - Dynamically Configured Stream Processing Using Flink & Kafka: SlideShare and Video
  • Scott Kidder - Building a Real-Time Anomaly-Detection System with Flink @ Mux: SlideShare and Video
  • 🔥Kenneth Knowles - Portable stateful big data processing in Apache Beam: SlideShare and Video
  • Cliff Resnick & Seth Wiesman - From Zero to Streaming: SlideShare and Video
  • Trevor Grant - Introduction to Online Machine Learning Algorithms: SlideShare and Video
  • K. & M. Bode - Queryable State or How to Build a Billing System w/o a Database: SlideShare and Video
  • Liu & Mai - AthenaX: Uber’s streaming processing platform on Flink: SlideShare and Video
  • 🔥Wang & Wang - Runtime Improvements in Blink for Large Scale Streaming at Alibaba: SlideShare and Video
  • Konstantinos Kloudas - Extending Flink’s Streaming APIs: SlideShare and Video
  • Joe Olson - Flink, Queryable State, and High Frequency Time Series Data: SlideShare and Video
  • 🔥Jamie Grier - Apache Flink: The Latest and Greatest: SlideShare and Video
  • Malo Deniélou - No shard left behind: Dynamic Work Rebalancing and other adaptive features in Apache Beam: SlideShare and Video
  • 🔥Stefan Richter - Improvements for large state and recovery in Flink: SlideShare and Video
  • S. Sundararaman - Experiences w/ Streaming vs Micro-Batch for Online Learning: SlideShare and Video
  • 🔥Timo Walther - Table & SQL API– unified APIs for batch & stream processing: SlideShare and Video
  • Eron Wright - Introducing Flink TensorFlow: SlideShare and Video
  • 🔥Ufuk Celebi - The Stream Processor as a Database: SlideShare and Video
  • 🔥Till Rohrmann - Redesigning Flink’s Distributed Architecture: SlideShare and Video
  • 🔥Stephan Ewen - Experiences running Flink at Very Large Scale: SlideShare and Video
  • Tzu-Li (Gordon) Tai - Joining the Scurry of Squirrels: Contributing to Flink: SlideShare and Video
  • E. K. Joseph & R. Yadav - Flink meet DC/OS – Deploying Flink at Scale: SlideShare and Video
  • Ted Dunning - Non-Flink Machine Learning on Flink: SlideShare and Video

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published