-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathtest_articulation.py
1224 lines (1054 loc) · 66.4 KB
/
test_articulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
# ignore private usage of variables warning
# pyright: reportPrivateUsage=none
"""Launch Isaac Sim Simulator first."""
from isaaclab.app import AppLauncher, run_tests
HEADLESS = True
# launch omniverse app
app_launcher = AppLauncher(headless=HEADLESS)
simulation_app = app_launcher.app
"""Rest everything follows."""
import ctypes
import torch
import unittest
from typing import Literal
import isaacsim.core.utils.prims as prim_utils
import isaaclab.sim as sim_utils
import isaaclab.utils.math as math_utils
import isaaclab.utils.string as string_utils
from isaaclab.actuators import ImplicitActuatorCfg
from isaaclab.assets import Articulation, ArticulationCfg
from isaaclab.sim import build_simulation_context
from isaaclab.utils.assets import ISAAC_NUCLEUS_DIR
##
# Pre-defined configs
##
from isaaclab_assets import ANYMAL_C_CFG, FRANKA_PANDA_CFG, SHADOW_HAND_CFG # isort:skip
def generate_articulation_cfg(
articulation_type: Literal["humanoid", "panda", "anymal", "shadow_hand", "single_joint"],
stiffness: float | None = 10.0,
damping: float | None = 2.0,
vel_limit_sim: float | None = None,
effort_limit_sim: float | None = None,
) -> ArticulationCfg:
"""Generate an articulation configuration.
Args:
articulation_type: Type of articulation to generate.
stiffness: Stiffness value for the articulation's actuators. Only currently used for humanoid.
damping: Damping value for the articulation's actuators. Only currently used for humanoid.
Returns:
The articulation configuration for the requested articulation type.
"""
if articulation_type == "humanoid":
articulation_cfg = ArticulationCfg(
spawn=sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Humanoid/humanoid_instanceable.usd"),
init_state=ArticulationCfg.InitialStateCfg(pos=(0.0, 0.0, 1.34)),
actuators={"body": ImplicitActuatorCfg(joint_names_expr=[".*"], stiffness=stiffness, damping=damping)},
)
elif articulation_type == "panda":
articulation_cfg = FRANKA_PANDA_CFG
elif articulation_type == "anymal":
articulation_cfg = ANYMAL_C_CFG
elif articulation_type == "shadow_hand":
articulation_cfg = SHADOW_HAND_CFG
elif articulation_type == "single_joint":
articulation_cfg = ArticulationCfg(
spawn=sim_utils.UsdFileCfg(usd_path=f"{ISAAC_NUCLEUS_DIR}/Robots/Simple/revolute_articulation.usd"),
actuators={
"joint": ImplicitActuatorCfg(
joint_names_expr=[".*"],
effort_limit_sim=effort_limit_sim,
velocity_limit_sim=vel_limit_sim,
stiffness=0.0,
damping=10.0,
),
},
)
else:
raise ValueError(
f"Invalid articulation type: {articulation_type}, valid options are 'humanoid', 'panda', 'anymal',"
" 'shadow_hand' and 'single_joint'."
)
return articulation_cfg
def generate_articulation(
articulation_cfg: ArticulationCfg, num_articulations: int, device: str
) -> tuple[Articulation, torch.tensor]:
"""Generate an articulation from a configuration.
Handles the creation of the articulation, the environment prims and the articulation's environment
translations
Args:
articulation_cfg: Articulation configuration.
num_articulations: Number of articulations to generate.
device: Device to use for the tensors.
Returns:
The articulation and environment translations.
"""
# Generate translations of 2.5 m in x for each articulation
translations = torch.zeros(num_articulations, 3, device=device)
translations[:, 0] = torch.arange(num_articulations) * 2.5
# Create Top-level Xforms, one for each articulation
for i in range(num_articulations):
prim_utils.create_prim(f"/World/Env_{i}", "Xform", translation=translations[i][:3])
articulation = Articulation(articulation_cfg.replace(prim_path="/World/Env_.*/Robot"))
return articulation, translations
class TestArticulation(unittest.TestCase):
"""Test for articulation class."""
"""
Tests
"""
def test_initialization_floating_base_non_root(self):
"""Test initialization for a floating-base with articulation root on a rigid body.
under the provided prim path."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(
articulation_type="humanoid", stiffness=0.0, damping=0.0
)
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# # Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that is fixed base
self.assertFalse(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertEqual(articulation.data.root_pos_w.shape, (num_articulations, 3))
self.assertEqual(articulation.data.root_quat_w.shape, (num_articulations, 4))
self.assertEqual(articulation.data.joint_pos.shape, (num_articulations, 21))
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# -- link names (check within articulation ordering is correct)
prim_path_body_names = [
path.split("/")[-1] for path in articulation.root_physx_view.link_paths[0]
]
self.assertListEqual(prim_path_body_names, articulation.body_names)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
def test_initialization_floating_base(self):
"""Test initialization for a floating-base with articulation root on provided prim path."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(
articulation_type="anymal", stiffness=0.0, damping=0.0
)
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that floating base
self.assertFalse(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertEqual(articulation.data.root_pos_w.shape, (num_articulations, 3))
self.assertEqual(articulation.data.root_quat_w.shape, (num_articulations, 4))
self.assertEqual(articulation.data.joint_pos.shape, (num_articulations, 12))
self.assertEqual(
articulation.data.default_mass.shape, (num_articulations, articulation.num_bodies)
)
self.assertEqual(
articulation.data.default_inertia.shape, (num_articulations, articulation.num_bodies, 9)
)
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# -- link names (check within articulation ordering is correct)
prim_path_body_names = [
path.split("/")[-1] for path in articulation.root_physx_view.link_paths[0]
]
self.assertListEqual(prim_path_body_names, articulation.body_names)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
def test_initialization_fixed_base(self):
"""Test initialization for fixed base."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="panda")
articulation, translations = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that fixed base
self.assertTrue(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertEqual(articulation.data.root_pos_w.shape, (num_articulations, 3))
self.assertEqual(articulation.data.root_quat_w.shape, (num_articulations, 4))
self.assertEqual(articulation.data.joint_pos.shape, (num_articulations, 9))
self.assertEqual(
articulation.data.default_mass.shape, (num_articulations, articulation.num_bodies)
)
self.assertEqual(
articulation.data.default_inertia.shape, (num_articulations, articulation.num_bodies, 9)
)
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# -- link names (check within articulation ordering is correct)
prim_path_body_names = [
path.split("/")[-1] for path in articulation.root_physx_view.link_paths[0]
]
self.assertListEqual(prim_path_body_names, articulation.body_names)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
# check that the root is at the correct state - its default state as it is fixed base
default_root_state = articulation.data.default_root_state.clone()
default_root_state[:, :3] = default_root_state[:, :3] + translations
torch.testing.assert_close(articulation.data.root_state_w, default_root_state)
def test_initialization_fixed_base_single_joint(self):
"""Test initialization for fixed base articulation with a single joint."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="single_joint")
articulation, translations = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that fixed base
self.assertTrue(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertEqual(articulation.data.root_pos_w.shape, (num_articulations, 3))
self.assertEqual(articulation.data.root_quat_w.shape, (num_articulations, 4))
self.assertEqual(articulation.data.joint_pos.shape, (num_articulations, 1))
self.assertEqual(
articulation.data.default_mass.shape, (num_articulations, articulation.num_bodies)
)
self.assertEqual(
articulation.data.default_inertia.shape, (num_articulations, articulation.num_bodies, 9)
)
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# -- link names (check within articulation ordering is correct)
prim_path_body_names = [
path.split("/")[-1] for path in articulation.root_physx_view.link_paths[0]
]
self.assertListEqual(prim_path_body_names, articulation.body_names)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
# check that the root is at the correct state - its default state as it is fixed base
default_root_state = articulation.data.default_root_state.clone()
default_root_state[:, :3] = default_root_state[:, :3] + translations
torch.testing.assert_close(articulation.data.root_state_w, default_root_state)
def test_initialization_hand_with_tendons(self):
"""Test initialization for fixed base articulated hand with tendons."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="shadow_hand")
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that fixed base
self.assertTrue(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertTrue(articulation.data.root_pos_w.shape == (num_articulations, 3))
self.assertTrue(articulation.data.root_quat_w.shape == (num_articulations, 4))
self.assertTrue(articulation.data.joint_pos.shape == (num_articulations, 24))
self.assertEqual(
articulation.data.default_mass.shape, (num_articulations, articulation.num_bodies)
)
self.assertEqual(
articulation.data.default_inertia.shape, (num_articulations, articulation.num_bodies, 9)
)
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
def test_initialization_floating_base_made_fixed_base(self):
"""Test initialization for a floating-base articulation made fixed-base using schema properties."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="anymal")
# Fix root link
articulation_cfg.spawn.articulation_props.fix_root_link = True
articulation, translations = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that is fixed base
self.assertTrue(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertEqual(articulation.data.root_pos_w.shape, (num_articulations, 3))
self.assertEqual(articulation.data.root_quat_w.shape, (num_articulations, 4))
self.assertEqual(articulation.data.joint_pos.shape, (num_articulations, 12))
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# -- link names (check within articulation ordering is correct)
prim_path_body_names = [
path.split("/")[-1] for path in articulation.root_physx_view.link_paths[0]
]
self.assertListEqual(prim_path_body_names, articulation.body_names)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
# check that the root is at the correct state - its default state as it is fixed base
default_root_state = articulation.data.default_root_state.clone()
default_root_state[:, :3] = default_root_state[:, :3] + translations
torch.testing.assert_close(articulation.data.root_state_w, default_root_state)
def test_initialization_fixed_base_made_floating_base(self):
"""Test initialization for fixed base made floating-base using schema properties."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="panda")
# Unfix root link
articulation_cfg.spawn.articulation_props.fix_root_link = False
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation.is_initialized)
# Check that is floating base
self.assertFalse(articulation.is_fixed_base)
# Check buffers that exists and have correct shapes
self.assertEqual(articulation.data.root_pos_w.shape, (num_articulations, 3))
self.assertEqual(articulation.data.root_quat_w.shape, (num_articulations, 4))
self.assertEqual(articulation.data.joint_pos.shape, (num_articulations, 9))
# Check some internal physx data for debugging
# -- joint related
self.assertEqual(
articulation.root_physx_view.max_dofs,
articulation.root_physx_view.shared_metatype.dof_count,
)
# -- link related
self.assertEqual(
articulation.root_physx_view.max_links,
articulation.root_physx_view.shared_metatype.link_count,
)
# -- link names (check within articulation ordering is correct)
prim_path_body_names = [
path.split("/")[-1] for path in articulation.root_physx_view.link_paths[0]
]
self.assertListEqual(prim_path_body_names, articulation.body_names)
# Simulate physics
for _ in range(10):
# perform rendering
sim.step()
# update articulation
articulation.update(sim.cfg.dt)
def test_out_of_range_default_joint_pos(self):
"""Test that the default joint position from configuration is out of range."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
# Create articulation
articulation_cfg = generate_articulation_cfg(articulation_type="panda")
articulation_cfg.init_state.joint_pos = {
"panda_joint1": 10.0,
"panda_joint[2, 4]": -20.0,
}
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertFalse(articulation._is_initialized)
def test_out_of_range_default_joint_vel(self):
"""Test that the default joint velocity from configuration is out of range."""
with build_simulation_context(device="cuda:0", add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
# Create articulation
articulation_cfg = FRANKA_PANDA_CFG.replace(prim_path="/World/Robot")
articulation_cfg.init_state.joint_vel = {
"panda_joint1": 100.0,
"panda_joint[2, 4]": -60.0,
}
articulation = Articulation(articulation_cfg)
# Check that boundedness of articulation is correct
self.assertEqual(ctypes.c_long.from_address(id(articulation)).value, 1)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertFalse(articulation._is_initialized)
def test_joint_limits(self):
"""Test write_joint_limits_to_sim API and when default pos falls outside of the new limits."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
# Create articulation
articulation_cfg = generate_articulation_cfg(articulation_type="panda")
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Play sim
sim.reset()
# Check if articulation is initialized
self.assertTrue(articulation._is_initialized)
# Get current default joint pos
default_joint_pos = articulation._data.default_joint_pos.clone()
# Set new joint limits
limits = torch.zeros(num_articulations, articulation.num_joints, 2, device=device)
limits[..., 0] = (
torch.rand(num_articulations, articulation.num_joints, device=device) + 5.0
) * -1.0
limits[..., 1] = torch.rand(num_articulations, articulation.num_joints, device=device) + 5.0
articulation.write_joint_limits_to_sim(limits)
# Check new limits are in place
torch.testing.assert_close(articulation._data.joint_limits, limits)
torch.testing.assert_close(articulation._data.default_joint_pos, default_joint_pos)
# Set new joint limits with indexing
env_ids = torch.arange(1, device=device)
joint_ids = torch.arange(2, device=device)
limits = torch.zeros(env_ids.shape[0], joint_ids.shape[0], 2, device=device)
limits[..., 0] = (torch.rand(env_ids.shape[0], joint_ids.shape[0], device=device) + 5.0) * -1.0
limits[..., 1] = torch.rand(env_ids.shape[0], joint_ids.shape[0], device=device) + 5.0
articulation.write_joint_limits_to_sim(limits, env_ids=env_ids, joint_ids=joint_ids)
# Check new limits are in place
torch.testing.assert_close(articulation._data.joint_limits[env_ids][:, joint_ids], limits)
torch.testing.assert_close(articulation._data.default_joint_pos, default_joint_pos)
# Set new joint limits that invalidate default joint pos
limits = torch.zeros(num_articulations, articulation.num_joints, 2, device=device)
limits[..., 0] = torch.rand(num_articulations, articulation.num_joints, device=device) * -0.1
limits[..., 1] = torch.rand(num_articulations, articulation.num_joints, device=device) * 0.1
articulation.write_joint_limits_to_sim(limits)
# Check if all values are within the bounds
within_bounds = (articulation._data.default_joint_pos >= limits[..., 0]) & (
articulation._data.default_joint_pos <= limits[..., 1]
)
self.assertTrue(torch.all(within_bounds))
# Set new joint limits that invalidate default joint pos with indexing
limits = torch.zeros(env_ids.shape[0], joint_ids.shape[0], 2, device=device)
limits[..., 0] = torch.rand(env_ids.shape[0], joint_ids.shape[0], device=device) * -0.1
limits[..., 1] = torch.rand(env_ids.shape[0], joint_ids.shape[0], device=device) * 0.1
articulation.write_joint_limits_to_sim(limits, env_ids=env_ids, joint_ids=joint_ids)
# Check if all values are within the bounds
within_bounds = (
articulation._data.default_joint_pos[env_ids][:, joint_ids] >= limits[..., 0]
) & (articulation._data.default_joint_pos[env_ids][:, joint_ids] <= limits[..., 1])
self.assertTrue(torch.all(within_bounds))
def test_external_force_buffer(self):
"""Test if external force buffer correctly updates in the force value is zero case."""
num_articulations = 2
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="anymal")
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# play the simulator
sim.reset()
# find bodies to apply the force
body_ids, _ = articulation.find_bodies("base")
# reset root state
root_state = articulation.data.default_root_state.clone()
articulation.write_root_state_to_sim(root_state)
# reset dof state
joint_pos, joint_vel = (
articulation.data.default_joint_pos,
articulation.data.default_joint_vel,
)
articulation.write_joint_state_to_sim(joint_pos, joint_vel)
# reset articulation
articulation.reset()
# perform simulation
for step in range(5):
# initiate force tensor
external_wrench_b = torch.zeros(articulation.num_instances, len(body_ids), 6, device=sim.device)
if step == 0 or step == 3:
# set a non-zero force
force = 1
else:
# set a zero force
force = 0
# set force value
external_wrench_b[:, :, 0] = force
external_wrench_b[:, :, 3] = force
# apply force
articulation.set_external_force_and_torque(
external_wrench_b[..., :3], external_wrench_b[..., 3:], body_ids=body_ids
)
# check if the articulation's force and torque buffers are correctly updated
for i in range(num_articulations):
self.assertTrue(articulation._external_force_b[i, 0, 0].item() == force)
self.assertTrue(articulation._external_torque_b[i, 0, 0].item() == force)
# apply action to the articulation
articulation.set_joint_position_target(articulation.data.default_joint_pos.clone())
articulation.write_data_to_sim()
# perform step
sim.step()
# update buffers
articulation.update(sim.cfg.dt)
def test_external_force_on_single_body(self):
"""Test application of external force on the base of the articulation."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="anymal")
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Play the simulator
sim.reset()
# Find bodies to apply the force
body_ids, _ = articulation.find_bodies("base")
# Sample a large force
external_wrench_b = torch.zeros(articulation.num_instances, len(body_ids), 6, device=sim.device)
external_wrench_b[..., 1] = 1000.0
# Now we are ready!
for _ in range(5):
# reset root state
root_state = articulation.data.default_root_state.clone()
articulation.write_root_pose_to_sim(root_state[:, :7])
articulation.write_root_velocity_to_sim(root_state[:, 7:])
# reset dof state
joint_pos, joint_vel = (
articulation.data.default_joint_pos,
articulation.data.default_joint_vel,
)
articulation.write_joint_state_to_sim(joint_pos, joint_vel)
# reset articulation
articulation.reset()
# apply force
articulation.set_external_force_and_torque(
external_wrench_b[..., :3], external_wrench_b[..., 3:], body_ids=body_ids
)
# perform simulation
for _ in range(100):
# apply action to the articulation
articulation.set_joint_position_target(articulation.data.default_joint_pos.clone())
articulation.write_data_to_sim()
# perform step
sim.step()
# update buffers
articulation.update(sim.cfg.dt)
# check condition that the articulations have fallen down
for i in range(num_articulations):
self.assertLess(articulation.data.root_pos_w[i, 2].item(), 0.2)
def test_external_force_on_multiple_bodies(self):
"""Test application of external force on the legs of the articulation."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="anymal")
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Play the simulator
sim.reset()
# Find bodies to apply the force
body_ids, _ = articulation.find_bodies(".*_SHANK")
# Sample a large force
external_wrench_b = torch.zeros(articulation.num_instances, len(body_ids), 6, device=sim.device)
external_wrench_b[..., 1] = 100.0
# Now we are ready!
for _ in range(5):
# reset root state
articulation.write_root_pose_to_sim(articulation.data.default_root_state.clone()[:, :7])
articulation.write_root_velocity_to_sim(articulation.data.default_root_state.clone()[:, 7:])
# reset dof state
joint_pos, joint_vel = (
articulation.data.default_joint_pos,
articulation.data.default_joint_vel,
)
articulation.write_joint_state_to_sim(joint_pos, joint_vel)
# reset articulation
articulation.reset()
# apply force
articulation.set_external_force_and_torque(
external_wrench_b[..., :3], external_wrench_b[..., 3:], body_ids=body_ids
)
# perform simulation
for _ in range(100):
# apply action to the articulation
articulation.set_joint_position_target(articulation.data.default_joint_pos.clone())
articulation.write_data_to_sim()
# perform step
sim.step()
# update buffers
articulation.update(sim.cfg.dt)
# check condition
for i in range(num_articulations):
# since there is a moment applied on the articulation, the articulation should rotate
self.assertTrue(articulation.data.root_ang_vel_w[i, 2].item() > 0.1)
def test_loading_gains_from_usd(self):
"""Test that gains are loaded from USD file if actuator model has them as None."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(
articulation_type="humanoid", stiffness=None, damping=None
)
articulation, _ = generate_articulation(articulation_cfg, num_articulations, device)
# Play sim
sim.reset()
# Expected gains
# -- Stiffness values
expected_stiffness = {
".*_waist.*": 20.0,
".*_upper_arm.*": 10.0,
"pelvis": 10.0,
".*_lower_arm": 2.0,
".*_thigh:0": 10.0,
".*_thigh:1": 20.0,
".*_thigh:2": 10.0,
".*_shin": 5.0,
".*_foot.*": 2.0,
}
indices_list, _, values_list = string_utils.resolve_matching_names_values(
expected_stiffness, articulation.joint_names
)
expected_stiffness = torch.zeros(
articulation.num_instances, articulation.num_joints, device=articulation.device
)
expected_stiffness[:, indices_list] = torch.tensor(values_list, device=articulation.device)
# -- Damping values
expected_damping = {
".*_waist.*": 5.0,
".*_upper_arm.*": 5.0,
"pelvis": 5.0,
".*_lower_arm": 1.0,
".*_thigh:0": 5.0,
".*_thigh:1": 5.0,
".*_thigh:2": 5.0,
".*_shin": 0.1,
".*_foot.*": 1.0,
}
indices_list, _, values_list = string_utils.resolve_matching_names_values(
expected_damping, articulation.joint_names
)
expected_damping = torch.zeros_like(expected_stiffness)
expected_damping[:, indices_list] = torch.tensor(values_list, device=articulation.device)
# Check that gains are loaded from USD file
torch.testing.assert_close(articulation.actuators["body"].stiffness, expected_stiffness)
torch.testing.assert_close(articulation.actuators["body"].damping, expected_damping)
def test_setting_gains_from_cfg(self):
"""Test that gains are loaded from the configuration correctly.
Note: We purposefully give one argument as int and other as float to check that it is handled correctly.
"""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=True, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="humanoid")
articulation, _ = generate_articulation(
articulation_cfg=articulation_cfg, num_articulations=num_articulations, device=device
)
# Play sim
sim.reset()
# Expected gains
expected_stiffness = torch.full(
(articulation.num_instances, articulation.num_joints), 10.0, device=articulation.device
)
expected_damping = torch.full_like(expected_stiffness, 2.0)
# Check that gains are loaded from USD file
torch.testing.assert_close(articulation.actuators["body"].stiffness, expected_stiffness)
torch.testing.assert_close(articulation.actuators["body"].damping, expected_damping)
def test_setting_gains_from_cfg_dict(self):
"""Test that gains are loaded from the configuration dictionary correctly.
Note: We purposefully give one argument as int and other as float to check that it is handled correctly.
"""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="humanoid")
articulation, _ = generate_articulation(
articulation_cfg=articulation_cfg, num_articulations=num_articulations, device=device
)
# Play sim
sim.reset()
# Expected gains
expected_stiffness = torch.full(
(articulation.num_instances, articulation.num_joints), 10.0, device=articulation.device
)
expected_damping = torch.full_like(expected_stiffness, 2.0)
# Check that gains are loaded from USD file
torch.testing.assert_close(articulation.actuators["body"].stiffness, expected_stiffness)
torch.testing.assert_close(articulation.actuators["body"].damping, expected_damping)
def test_setting_velocity_sim_limits(self):
"""Test that velocity limits are loaded form the configuration correctly."""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
for limit in (5.0, None):
with self.subTest(num_articulations=num_articulations, device=device, limit=limit):
with build_simulation_context(
device=device, add_ground_plane=False, auto_add_lighting=True
) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(
articulation_type="single_joint", vel_limit_sim=limit, effort_limit_sim=limit
)
articulation, _ = generate_articulation(
articulation_cfg=articulation_cfg, num_articulations=num_articulations, device=device
)
# Play sim
sim.reset()
if limit is not None:
# Expected gains
expected_velocity_limit = torch.full(
(articulation.num_instances, articulation.num_joints),
limit,
device=articulation.device,
)
# Check that gains are loaded from USD file
torch.testing.assert_close(
articulation.actuators["joint"].velocity_limit_sim, expected_velocity_limit
)
torch.testing.assert_close(
articulation.data.joint_velocity_limits, expected_velocity_limit
)
torch.testing.assert_close(
articulation.root_physx_view.get_dof_max_velocities().to(device),
expected_velocity_limit,
)
def test_reset(self):
"""Test that reset method works properly.
Need to check that all actuators are reset and that forces, torques and last body velocities are reset to 0.0.
NOTE: Currently no way to determine actuators have been reset, can leave this to actuator tests that
implement reset method.
"""
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(device=device, add_ground_plane=False, auto_add_lighting=True) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="humanoid")
articulation, _ = generate_articulation(
articulation_cfg=articulation_cfg, num_articulations=num_articulations, device=device
)
# Play the simulator
sim.reset()
# Now we are ready!
# reset articulation
articulation.reset()
# Reset should zero external forces and torques
self.assertFalse(articulation.has_external_wrench)
self.assertEqual(torch.count_nonzero(articulation._external_force_b), 0)
self.assertEqual(torch.count_nonzero(articulation._external_torque_b), 0)
def test_apply_joint_command(self):
for num_articulations in (1, 2):
for device in ("cuda:0", "cpu"):
with self.subTest(num_articulations=num_articulations, device=device):
with build_simulation_context(
gravity_enabled=True, device=device, add_ground_plane=True, auto_add_lighting=True
) as sim:
sim._app_control_on_stop_handle = None
articulation_cfg = generate_articulation_cfg(articulation_type="panda")
articulation, _ = generate_articulation(
articulation_cfg=articulation_cfg, num_articulations=num_articulations, device=device
)
# Play the simulator
sim.reset()
for _ in range(100):
# perform step
sim.step()
# update buffers
articulation.update(sim.cfg.dt)
# reset dof state
joint_pos = articulation.data.default_joint_pos
joint_pos[:, 3] = 0.0
# apply action to the articulation
articulation.set_joint_position_target(joint_pos)
articulation.write_data_to_sim()