-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathcheck_texture_randomization.py
203 lines (162 loc) · 6.53 KB
/
check_texture_randomization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""
This script checks the functionality of texture randomization applied to the cartpole scene.
"""
"""Launch Isaac Sim Simulator first."""
import argparse
from omni.isaac.lab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Check applying texture randomization to the cartpole scene.")
parser.add_argument("--num_envs", type=int, default=16, help="Number of environments to spawn.")
parser.add_argument(
"--replicate_physics",
type=bool,
default=False,
help="Replicates physics properties across all environments. For texture randomization, it must be set to False.",
)
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli = parser.parse_args()
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import math
import torch
import omni.isaac.lab.envs.mdp as mdp
from omni.isaac.lab.envs import ManagerBasedEnv, ManagerBasedEnvCfg
from omni.isaac.lab.managers import EventTermCfg as EventTerm
from omni.isaac.lab.managers import ObservationGroupCfg as ObsGroup
from omni.isaac.lab.managers import ObservationTermCfg as ObsTerm
from omni.isaac.lab.managers import SceneEntityCfg
from omni.isaac.lab.utils import configclass
from omni.isaac.lab.utils.assets import NVIDIA_NUCLEUS_DIR
from omni.isaac.lab_tasks.manager_based.classic.cartpole.cartpole_env_cfg import CartpoleSceneCfg
@configclass
class ActionsCfg:
"""Action specifications for the environment."""
joint_efforts = mdp.JointEffortActionCfg(asset_name="robot", joint_names=["slider_to_cart"], scale=5.0)
@configclass
class ObservationsCfg:
"""Observation specifications for the environment."""
@configclass
class PolicyCfg(ObsGroup):
"""Observations for policy group."""
# observation terms (order preserved)
joint_pos_rel = ObsTerm(func=mdp.joint_pos_rel)
joint_vel_rel = ObsTerm(func=mdp.joint_vel_rel)
def __post_init__(self) -> None:
self.enable_corruption = False
self.concatenate_terms = True
# observation groups
policy: PolicyCfg = PolicyCfg()
@configclass
class EventCfg:
"""Configuration for events."""
# on reset
cart_texture_randomizer = EventTerm(
func=mdp.randomize_visual_texture_material,
mode="reset",
params={
"asset_cfg": SceneEntityCfg("robot", body_names=["cart"]),
"texture_paths": [
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Bamboo_Planks/Bamboo_Planks_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Cherry/Cherry_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Oak/Oak_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Timber/Timber_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Timber_Cladding/Timber_Cladding_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Walnut_Planks/Walnut_Planks_BaseColor.png",
],
"event_name": "cart_texture_randomizer",
"texture_rotation": (math.pi / 2, math.pi / 2),
},
)
pole_texture_randomizer = EventTerm(
func=mdp.randomize_visual_texture_material,
mode="reset",
params={
"asset_cfg": SceneEntityCfg("robot", body_names=["pole"]),
"texture_paths": [
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Bamboo_Planks/Bamboo_Planks_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Cherry/Cherry_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Oak/Oak_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Timber/Timber_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Timber_Cladding/Timber_Cladding_BaseColor.png",
f"{NVIDIA_NUCLEUS_DIR}/Materials/Base/Wood/Walnut_Planks/Walnut_Planks_BaseColor.png",
],
"event_name": "pole_texture_randomizer",
"texture_rotation": (math.pi / 2, math.pi / 2),
},
)
reset_cart_position = EventTerm(
func=mdp.reset_joints_by_offset,
mode="reset",
params={
"asset_cfg": SceneEntityCfg("robot", joint_names=["slider_to_cart"]),
"position_range": (-1.0, 1.0),
"velocity_range": (-0.1, 0.1),
},
)
reset_pole_position = EventTerm(
func=mdp.reset_joints_by_offset,
mode="reset",
params={
"asset_cfg": SceneEntityCfg("robot", joint_names=["cart_to_pole"]),
"position_range": (-0.125 * math.pi, 0.125 * math.pi),
"velocity_range": (-0.01 * math.pi, 0.01 * math.pi),
},
)
@configclass
class CartpoleEnvCfg(ManagerBasedEnvCfg):
"""Configuration for the cartpole environment."""
# Scene settings
scene = CartpoleSceneCfg(env_spacing=2.5)
# Basic settings
actions = ActionsCfg()
observations = ObservationsCfg()
events = EventCfg()
def __post_init__(self):
"""Post initialization."""
# viewer settings
self.viewer.eye = [4.5, 0.0, 6.0]
self.viewer.lookat = [0.0, 0.0, 2.0]
# step settings
self.decimation = 4 # env step every 4 sim steps: 200Hz / 4 = 50Hz
# simulation settings
self.sim.dt = 0.005 # sim step every 5ms: 200Hz
def main():
"""Main function."""
# parse the arguments
env_cfg = CartpoleEnvCfg()
env_cfg.scene.num_envs = args_cli.num_envs
env_cfg.scene.replicate_physics = args_cli.replicate_physics
# setup base environment
env = ManagerBasedEnv(cfg=env_cfg)
# simulate physics
count = 0
while simulation_app.is_running():
with torch.inference_mode():
# reset
if count % 300 == 0:
count = 0
env.reset()
print("-" * 80)
print("[INFO]: Resetting environment...")
print("[INFO]: A new set of random textures have been applied.")
# sample random actions
joint_efforts = torch.randn_like(env.action_manager.action)
# step the environment
env.step(joint_efforts)
# update counter
count += 1
# close the environment
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()