Skip to content

Support numba compiled sort and argsort functions #1309

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions pytensor/link/numba/dispatch/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
from pytensor.tensor.math import Dot
from pytensor.tensor.shape import Reshape, Shape, Shape_i, SpecifyShape
from pytensor.tensor.slinalg import Solve
from pytensor.tensor.sort import ArgSortOp, SortOp
from pytensor.tensor.type import TensorType
from pytensor.tensor.type_other import MakeSlice, NoneConst

Expand Down Expand Up @@ -432,6 +433,68 @@ def shape_i(x):
return shape_i


@numba_funcify.register(SortOp)
def numba_funcify_SortOp(op, node, **kwargs):
@numba_njit
def sort_f(a, axis):
axis = axis.item()

a_swapped = np.swapaxes(a, axis, -1)
a_sorted = np.sort(a_swapped)
a_sorted_swapped = np.swapaxes(a_sorted, -1, axis)

return a_sorted_swapped

if op.kind != "quicksort":
warnings.warn(
(
f'Numba function sort doesn\'t support kind="{op.kind}"'
" switching to `quicksort`."
),
UserWarning,
)

return sort_f


@numba_funcify.register(ArgSortOp)
def numba_funcify_ArgSortOp(op, node, **kwargs):
def argsort_f_kind(kind):
@numba_njit
def argort_vec(X, axis):
axis = axis.item()

Y = np.swapaxes(X, axis, 0)
result = np.empty_like(Y)

indices = list(np.ndindex(Y.shape[1:]))

for idx in indices:
result[(slice(None), *idx)] = np.argsort(
Y[(slice(None), *idx)], kind=kind
)

result = np.swapaxes(result, 0, axis)

return result

return argort_vec

kind = op.kind

if kind not in ["quicksort", "mergesort"]:
kind = "quicksort"
warnings.warn(
(
f'Numba function argsort doesn\'t support kind="{op.kind}"'
" switching to `quicksort`."
),
UserWarning,
)

return argsort_f_kind(kind)


@numba.extending.intrinsic
def direct_cast(typingctx, val, typ):
if isinstance(typ, numba.types.TypeRef):
Expand Down
65 changes: 65 additions & 0 deletions tests/link/numba/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
from pytensor.tensor import blas
from pytensor.tensor.elemwise import Elemwise
from pytensor.tensor.shape import Reshape, Shape, Shape_i, SpecifyShape
from pytensor.tensor.sort import ArgSortOp, SortOp


if TYPE_CHECKING:
Expand Down Expand Up @@ -378,6 +379,70 @@ def test_Shape(x, i):
compare_numba_and_py([], [g], [])


@pytest.mark.parametrize(
"x",
[
[], # Empty list
[3, 2, 1], # Simple list
np.random.randint(0, 10, (3, 2, 3, 4, 4)), # Multi-dimensional array
],
)
@pytest.mark.parametrize("axis", [0, -1, None])
@pytest.mark.parametrize(
("kind", "exc"),
[
["quicksort", None],
["mergesort", UserWarning],
["heapsort", UserWarning],
["stable", UserWarning],
],
)
def test_Sort(x, axis, kind, exc):
if axis:
g = SortOp(kind)(pt.as_tensor_variable(x), axis)
else:
g = SortOp(kind)(pt.as_tensor_variable(x))

cm = contextlib.suppress() if not exc else pytest.warns(exc)

with cm:
compare_numba_and_py([], [g], [])


@pytest.mark.parametrize(
"x",
[
[], # Empty list
[3, 2, 1], # Simple list
None, # Multi-dimensional array (see below)
],
)
@pytest.mark.parametrize("axis", [0, -1, None])
@pytest.mark.parametrize(
("kind", "exc"),
[
["quicksort", None],
["heapsort", None],
["stable", UserWarning],
],
)
def test_ArgSort(x, axis, kind, exc):
if x is None:
x = np.arange(5 * 5 * 5 * 5)
np.random.shuffle(x)
x = np.reshape(x, (5, 5, 5, 5))

if axis:
g = ArgSortOp(kind)(pt.as_tensor_variable(x), axis)
else:
g = ArgSortOp(kind)(pt.as_tensor_variable(x))

cm = contextlib.suppress() if not exc else pytest.warns(exc)

with cm:
compare_numba_and_py([], [g], [])


@pytest.mark.parametrize(
"v, shape, ndim",
[
Expand Down