Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

config migration: float8* #1694

Merged
merged 19 commits into from
Feb 14, 2025
14 changes: 11 additions & 3 deletions test/dtypes/test_affine_quantized.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,16 +123,24 @@ def test_weights_only(self, apply_quant):
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
@common_utils.parametrize("apply_quant", get_quantization_functions(False, False))
def test_to_device(self, apply_quant):
def _apply(module, config_or_subclass_inserter):
if isinstance(config_or_subclass_inserter, AOBaseConfig):
quantize_(module, config_or_subclass_inserter)
else:
# TODO(#1690): delete this once config migration is done
module = config_or_subclass_inserter(module)
return module

linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16)
ql = apply_quant(linear)
ql = _apply(linear, apply_quant)
ql.to("cuda")

linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16)
ql = apply_quant(linear)
ql = _apply(linear, apply_quant)
ql.to(device="cuda")

linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16)
ql = apply_quant(linear)
ql = _apply(linear, apply_quant)
ql.cuda()

@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
Expand Down
41 changes: 36 additions & 5 deletions test/quantization/test_quant_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,9 @@
Quantizer,
TwoStepQuantizer,
_replace_with_custom_fn_if_matches_filter,
float8_dynamic_activation_float8_weight,
float8_static_activation_float8_weight,
float8_weight_only,
int4_weight_only,
int8_dynamic_activation_int4_weight,
int8_dynamic_activation_int8_weight,
Expand All @@ -46,6 +49,7 @@
TORCH_VERSION_AT_LEAST_2_4,
TORCH_VERSION_AT_LEAST_2_5,
TORCH_VERSION_AT_LEAST_2_6,
is_sm_at_least_89,
unwrap_tensor_subclass,
)

Expand Down Expand Up @@ -784,28 +788,55 @@ def test_int4wo_cpu(self, dtype, x_dim):
assert "_weight_int4pack_mm_for_cpu" in code[0]
assert "aten.mm.default" not in code[0]

# TODO(#1690): move to new config names
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_4, "Test only enabled for 2.4+")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
def test_int4_weight_only_numerics(self):
@common_utils.parametrize(
"config",
[
int4_weight_only(),
float8_weight_only(),
float8_dynamic_activation_float8_weight(),
float8_static_activation_float8_weight(scale=torch.tensor([1.0])),
],
)
def test_workflow_e2e_numerics(self, config):
"""
Simple test of e2e int4_weight_only workflow, comparing numerics
to a bfloat16 baseline.
"""
if (
isinstance(
config,
(
float8_dynamic_activation_float8_weight,
float8_static_activation_float8_weight,
),
)
and not is_sm_at_least_89()
):
return unittest.skip("requires CUDA capability 8.9 or greater")

# scale has to be moved to cuda here because the parametrization init
# code happens before gating for cuda availability
if isinstance(config, float8_static_activation_float8_weight):
config.scale = config.scale.to("cuda")

# set up inputs
x = torch.randn(128, 128, device="cuda", dtype=torch.bfloat16)
# TODO(future): model in float32 leads to error: https://gist.github.com/vkuzo/63b3bcd7818393021a6e3fb4ccf3c469
# is that expected?
m_ref = torch.nn.Sequential(torch.nn.Linear(128, 128)).cuda().bfloat16()
m_int4_wo = copy.deepcopy(m_ref)
m_q = copy.deepcopy(m_ref)

# quantize
quantize_(m_int4_wo, int4_weight_only())
quantize_(m_q, config)

with torch.no_grad():
y_ref = m_ref(x)
y_int4_wo = m_int4_wo(x)
y_q = m_q(x)

sqnr = compute_error(y_ref, y_int4_wo)
sqnr = compute_error(y_ref, y_q)
assert sqnr >= 20, f"SQNR {sqnr} is too low"


Expand Down
6 changes: 6 additions & 0 deletions torchao/quantization/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,9 @@
AffineQuantizedObserverBase,
)
from .quant_api import (
Float8DynamicActivationFloat8WeightConfig,
Float8StaticActivationFloat8WeightConfig,
Float8WeightOnlyConfig,
Int4WeightOnlyConfig,
float8_dynamic_activation_float8_weight,
float8_static_activation_float8_weight,
Expand Down Expand Up @@ -121,6 +124,9 @@
"gemlite_uintx_weight_only",
"swap_conv2d_1x1_to_linear",
"Int4WeightOnlyConfig",
"Float8WeightOnlyConfig",
"Float8DynamicActivationFloat8WeightConfig",
"Float8StaticActivationFloat8WeightConfig",
# smooth quant - subject to change
"get_scale",
"SmoothFakeDynQuantMixin",
Expand Down
Loading
Loading